Referencias

[1]   S. Xambó-Descamps, “Alessio Figalli: Mágia, Método, Misión,” Boletín electrónico de la SEMA, vol. 24, no. abril, pp. 12–29, 2020. https://web.mat.upc.edu/sebastia.xambo/Bios/AF/2020-Xambo--AlessioFigalli.pdf.

[2]   A. Figalli and J. Serra, “On stable solutions for boundary reactions: a De Giorgi-type result in dimension 4 + 1,” Inventiones mathematicae, vol. 219, no. 1, pp. 153–177, 2020. https://arxiv.org/pdf/1705.02781.pdf.

[3]   S. Dipierro, J. Serra, and E. Valdinoci, “Improvement of flatness for nonlocal phase transitions,” American Journal of Mathematics, vol. 142, no. 4, pp. 1083–1160, 2020. https://arxiv.org/pdf/1611.10105.pdf.

[4]   X. Cabré, A. Figalli, X. Ros-Oton, and J. Serra, “Stable solutions to semilinear elliptic equations are smooth up to dimension 9,” Acta Mathematica, vol. 224, pp. 187–252, 2020. https://arxiv.org/pdf/1907.09403.pdf.

[5]   A. Figalli, X. Ros-Oton, and J. Serra, “Generic regularity of free boundaries for the obstacle problem,” Publications mathématiques de l’IHÉS, pp. 1–112, 2020. https://arxiv.org/pdf/1912.00714.pdf.

[6]   X. Cabré, E. Cinti, and J. Serra, “Stable s-minimal cones in 3 are flat for s 1,” Journal für die reine und angewandte Mathematik, vol. 2020, no. 764, pp. 157–180, 2020. https://upcommons.upc.edu/bitstream/handle/2117/165885/cones-CRELLE.pdf.

[7]   X. Fernández-Real and J. Serra, “Regularity of minimal surfaces with lower-dimensional obstacles,” Journal für die reine und angewandte Mathematik, vol. 2020, no. 767, pp. 37–75, 2020. https://arxiv.org/pdf/1802.07607.pdf.

[8]   E. Cinti, J. Serra, and E. Valdinoci, “Quantitative flatness results and BV estimates for nonlocal anisotropic minimal surfaces,” Journal of Differential Geometry, vol. 112, no. 3, pp. 447–504, 2019. https://arxiv.org/pdf/1602.00540v2.pdf.

[9]   A. Figalli and J. Serra, “On the fine structure of the free boundary for the classical obstacle problem,” Inventiones mathematicae, vol. 215, no. 1, pp. 311–366, 2019. https://arxiv.org/pdf/1709.04002.pdf.

[10]   L. Caffarelli, X. Ros-Oton, and J. Serra, “Obstacle problems for integro-differential operators: regularity of solutions and free boundaries,” Inventiones mathematicae, vol. 208, no. 3, pp. 1155–1211, 2017. https://arxiv.org/pdf/1601.05843.pdf.

[11]   X. Ros-Oton and J. Serra, “Boundary regularity for fully nonlinear integro-differential equations,” Duke Mathematical Journal, vol. 165, no. 11, pp. 2079–2154, 2016. https://arxiv.org/pdf/1404.1197.pdf.

[12]   X. Ros-Oton and J. Serra, “Regularity theory for general stable operators,” J. Differential Equations, vol. 260, no. 12, pp. 8675–8715, 2016.

[13]   RSME, Olimpiada Matemática Española (1963-2004). Real Sociedad Matemática Española, 2004. «Por ello quiero felicitar y agradecer a la Comisión de Olimpiadas de la RSME su esfuerzo y generosidad, y especialmente al profesor Josep Grané sin cuyo trabajo este material no se habría realizado» (de la presentación de Carlos Andradas, Presidente de la RSME).

[14]   RSME, “OME: Problemas propuestos y resultados (1993-2019),” 2019. https://www.rsme.es/olimpiada-matematica-espanola/problemas-propuestos-y-resultados/.

[15]   J. Serra, “Two symmetry problems in reaction-diffusion equations,” 2010. Master Thesis. FME/UPC. 59 p.

[16]   J. Serra, “Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities,” J. Differential Equations, vol. 254, no. 4, pp. 1893–1902, 2013.

[17]   X. Ros-Oton, “Minimizers to reaction-diffusion PDEs, Sobolev inequalities, and monomial weights,” 2010. Master Thesis. FME/UPC. 55 p.

[18]   J. Serra, Elliptic and parabolic PDEs: regularity for nonlocal diffusion equations and two isoperimetric problems. PhD thesis, FME/UPC, 2014. 329 p.

[19]   X. Ros-Oton, Integro-differential equations: Regularity theory and Pohozaev identities. PhD thesis, FME/UPC, 2014. 309 p.

[20]   X. Ros-Oton and J. Serra, “The Pohozaev identity for the fractional Laplacian,” Archive for Rational Mechanics and Analysis, vol. 213, no. 2, pp. 587–628, 2014. https://arxiv.org/pdf/1207.5986.pdf.

[21]   X. Ros-Oton and J. Serra, “The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,” Journal de Mathématiques Pures et Appliquées, vol. 101, no. 3, pp. 275–302, 2014. https://www.sciencedirect.com/science/article/pii/S0021782413000895.

[22]   X. Ros-Oton and J. Serra, “Nonexistence results for nonlocal equations with critical and supercritical nonlinearities,” Comm. Partial Differential Equations, vol. 40, no. 1, pp. 115–133, 2015.

[23]   X. Ros-Oton and J. Serra, “The extremal solution for the fractional Laplacian,” Calc. Var. Partial Differential Equations, vol. 50, no. 3-4, pp. 723–750, 2014.

[24]   X. Cabré, X. Ros-Oton, and J. Serra, “Sharp isoperimetric inequalities via the ABP method,” J. Eur. Math. Soc. (JEMS), vol. 18, no. 12, pp. 2971–2998, 2016.

[25]   X. Cabré and J. Serra, “An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions,” Nonlinear Anal., vol. 137, pp. 246–265, 2016.

[26]   J. Serra, “Regularity for fully nonlinear nonlocal parabolic equations with rough kernels,” Calc. Var. Partial Differential Equations, vol. 54, no. 1, pp. 615–629, 2015.

[27]   X. Cabré and X. Ros-Oton, “Regularity of stable solutions up to dimension 7 in domains of double revolution,” Communications in Partial Differential Equations, vol. 38, no. 1, pp. 135–154, 2013. https://arxiv.org/pdf/1202.1220.pdf.

[28]   X. Cabré and X. Ros-Oton, “Sobolev and isoperimetric inequalities with monomial weights,” Journal of Differential Equations, vol. 255, no. 11, pp. 4312–4336, 2013. https://www.sciencedirect.com/science/article/pii/S0022039613003677.

[29]   X. Ros-Oton, “Regularity for the fractional Gelfand problem up to dimension 7,” Journal of Mathematical Analysis and Applications, vol. 419, no. 1, pp. 10–19, 2014. https://www.sciencedirect.com/science/article/pii/S0022247X14003990.

[30]   S. Dipierro, J. Serra, and E. Valdinoci, “Nonlocal phase transitions: rigidity results and anisotropic geometry,” Rend. Semin. Mat. Univ. Politec. Torino, vol. 74, no. 2, pp. 135–149, 2016.

[31]   X. Ros-Oton, J. Serra, and E. Valdinoci, “Pohozaev identities for anisotropic integrodifferential operators,” Comm. Partial Differential Equations, vol. 42, no. 8, pp. 1290–1321, 2017.

[32]   X. Ros-Oton and J. Serra, “Fractional Laplacian: Pohozaev identity and nonexistence results,” C. R. Math. Acad. Sci. Paris, vol. 350, no. 9-10, pp. 505–508, 2012.

[33]   X. Cabré, X. Ros-Oton, and J. Serra, “Euclidean balls solve some isoperimetric problems with nonradial weights,” C. R. Math. Acad. Sci. Paris, vol. 350, no. 21-22, pp. 945–947, 2012.

[34]   J. Serra, “Cσ+α regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels,” Calc. Var. Partial Differential Equations, vol. 54, no. 4, pp. 3571–3601, 2015.

[35]   X. Ros-Oton and J. Serra, “Local integration by parts and Pohozaev identities for higher order fractional Laplacians,” Discrete Contin. Dyn. Syst., vol. 35, no. 5, pp. 2131–2150, 2015.

[36]   X. Ros-Oton and J. Serra, “Boundary regularity estimates for nonlocal elliptic equations in C1 and C1 domains,” Ann. Mat. Pura Appl. (4), vol. 196, no. 5, pp. 1637–1668, 2017.

[37]   X. Ros-Oton and J. Serra, “The structure of the free boundary in the fully nonlinear thin obstacle problem,” Adv. Math., vol. 316, pp. 710–747, 2017.

[38]   S. Serfaty and J. Serra, “Quantitative stability of the free boundary in the obstacle problem,” Anal. PDE, vol. 11, no. 7, pp. 1803–1839, 2018.

[39]   X. Ros-Oton and J. Serra, “The boundary Harnack principle for nonlocal elliptic operators in non-divergence form,” Potential Anal., vol. 51, no. 3, pp. 315–331, 2019.

[40]   E. Cinti, F. Glaudo, A. Pratelli, X. Ros-Oton, and J. Serra, “Sharp quantitative stability for isoperimetric inequalities with homogeneous weights,” 2020. https://arxiv.org/pdf/2006.13867.pdf.

[41]   S. Dipierro, X. Ros-Oton, J. Serra, and E. Valdinoci, “Non-symmetric stable operators: regularity theory and integration by parts,” 2020. https://arxiv.org/pdf/2012.04833.pdf.

[42]   J. Serra, “The geometric structure of interfaces and free boundaries,” 2021. Aparecerá en la Newsletter de la EMS. Elaborado por invitación de los editores de la revista, describe a grandes rasgos la investigación del autor y su significación.

[43]   A. Figalli, X. Ros-Oton, and J. Serra, “The singular set in the Stefan problem,” 2021. Preprint.

    Siglas

CFIS Centro de Formación Interdisciplinaria Superior (UPC)
EDP Ecuaciones en Derivadas Parciales
EMS European Mathematical Society
ERC European Research Council
ESO Enseñanza Secundaria Obligatoria
ETH Eidgenössische Technische Hochschule Zürich
Escuela Politécnica Federal de Zúrich
FAD Fomento de las Artes y el Diseño
FME Facultat de Matemàtiques i Estadística (UPC)
IAS Institute for Advanced Study (Princeton)
ICM International Congress of Mathematicians
OM Olimpiada Matemática
OME Olimpiada Matemática Española
OMI Olimpiada Matemática Internacional
RSME Real Sociedad Matemática Española
SCM Societat Catalana de Matemàtiques
SEMA Sociedad Española de Matemática Aplicada
SNF Fundación Nacional Suiza para las Ciencias
UPC Universitat Politècnica de Catalunya
WIAS Weierstrass Institute for Applied Analysis and Stochastics (Berlin)