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Abstract

This paper contains a brief description of various problems in the field
of numerical analysis of partial differential equations. First, some results
concerning the numerical analysis of boundary value problems in exterior
domains of the plane are reviewed. Then, the derivation of dual-dual
mixed variational formulations in fluid mechanics is explored. Finally,
some results related to a posteriori error analysis in linear elasticity and
a new augmented formulation in elasticity are discussed.
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1 Introduction

The aim of our research is to design and analyze efficient numerical methods that
could be used to solve boundary value problems for partial differential equations
in practice. We have dealt with problems in exterior domains, including linear
and nonlinear elliptic and parabolic-elliptic equations and some problems in
elasticity. We also coped with some models from fluid mechanics and elasticity
in bounded domains.

The numerical solution of boundary value problems in exterior domains
combining boundary elements and finite elements present several difficulties
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in practice. Indeed, these methods lead to ill-conditioned and badly
structured systems of equations, and the computation of the boundary terms
is cumbersome when the coupling boundary is a polygonal curve. Moreover,
in this case we do not know how to control the effect of numerical quadratures
on convergence. These facts motivated the work described in section 2. We
present there a parametrized version of the standard symmetric method of
coupling boundary elements and finite elements. This technique offers some
advantages to solve a class of problems posed in exterior domains of the plane
and has been applied to several nonlinear problems and to the elasticity system
(cf. [43, 58, 57, 44]).

Later, we became interested in the derivation of mixed methods in fluids
mechanics when the constitutive law cannot be inverted explicitly. Dual-dual
methods are of special interest in this situation since no inversion process is
required in their derivation. They had been applied to some linear and nonlinear
problems in potential theory and elasticity (cf. [32, 35, 3, 40]). In [29] we derived
a low-order mixed finite element method based on a dual-dual formulation for
a class of quasi-Newtonian Stokes flows. In particular, we obtained, as a by-
product, a new mixed finite element method for the usual Stokes problem. We
carried out an a posteriori error analysis, based on local problems, and obtained
fully explicit and reliable a posteriori error estimates of the accuracy of the
computed numerical solution (see [30]). Then, we applied the approach from
[29] to derive a low-order mixed finite element method for the generalized Stokes
problem and developed the corresponding a posteriori error analysis (see [11]).
In section 3, we review the derivation of dual-dual mixed formulations for quasi-
Newtonian Stokes flows and for the generalized Stokes problem.

More recently, we turned our attention to an augmented mixed finite element
method proposed in [27] for the linear elasticity system in the plane. We
developed a residual-based a posteriori error analysis (see [4, 5]), combining a
technique used in mixed finite element schemes with the usual procedure applied
to primal finite element methods, and obtained a posteriori error estimators of
residual type that are both efficient and reliable. In the last section, we outline
the proof in the case of pure homogeneous Dirichlet boundary conditions.

2 Symmetric coupling of boundary elements and finite elements for
solving exterior problems in 2D

Many physical and engineering problems are naturally posed in the exterior
of a bounded domain; typical applications arise in electromagnetism and
acoustics. The finite element method (FEM) can be used to solve nonlinear
and nonhomogeneous boundary value problems; however, it can only be applied
in bounded regions. On the other hand, the boundary element method
(BEM) is well suited to solve problems in unbounded domains since it is
based on the idea of reducing the partial differential equation to an integral
equation on the boundary, yet it has the drawback that the equation must be
linear, homogeneous and with constant coefficients. BEM-FEM methods were
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conceived with the aim of making the most of both techniques to solve boundary
value problems in exterior domains (cf. for instance [74, 75]).

When a boundary value problem in an exterior domain is solved using a
BEM-FEM method, an artificial boundary –called the coupling boundary– is
introduced in order to divide the domain of the original problem in two regions:
a bounded interior region and an unbounded exterior one, so that the equation
is linear, homogeneous and with constant coefficients in the latter. Then, the
problem can be written equivalently as a transmission problem, demanding that
the solution satisfy appropriate conditions on the coupling boundary. Next, the
BEM is applied in the unbounded region and the problem there is reduced to an
integral equation on the coupling boundary. Then, the original problem reduces
to a problem in the bounded region with non-local boundary conditions on the
coupling boundary, and can be solved using the FEM. Finally, the solution in
the exterior region is recovered through the integral representation formula.

To fix ideas, let us consider the Poisson problem in an exterior domain of R
2.

Let Ω0 ⊂ R
2 be a bounded domain. We assume, for simplicity, that Γ0 := ∂Ω0 is

a polygonal curve, and denote by Ω′
0
:= R

2 \Ω0. Given f ∈ L2(Ω′0) , of compact
support, we look for a function u : Ω′

0
→ R such that⎧⎨⎩ −Δu = f in Ω′

0
,

u = 0 on Γ0,
u = O(1) as |x| → +∞.

(1)

Let Γ be a simple closed curve such that the support of f and the domain Ω0

are contained in the region bounded by Γ. The coupling boundary Γ divides the
domain of the original problem, Ω′0, in two regions: a bounded interior region,
that we denote Ω−, and the unbounded region exterior to Γ, that we denote Ω+.
The limit or trace over Γ of a function v defined in Ω+ (resp., Ω−) is denoted

Figure 1: Domain of the transmission problem

by v+ (resp., v−). Finally, n denotes the unit normal vector to Γ, pointing from
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Ω− to Ω+, and t denotes the tangent vector.
Then, problem (1) is equivalent to a transmission problem, which consists

of a problem posed in Ω−:{
−Δu = f in Ω−,

u = 0 on Γ0,
(2)

and an homogeneous problem in Ω+:{
−Δu = 0 in Ω+,

u = O(1) as |x| → +∞, (3)

coupled by means of transmission conditions on the coupling boundary Γ:

u− = u+,
∂u

∂n

−

=
∂u

∂n

+

. (4)

The variational formulation of problem (2) reads: find u ∈ V such that

a(u, v)−
∫
Γ

∂u

∂n

−

v− =

∫
Ω−

fv ∀ v ∈ V, (5)

where V := {v ∈ H1(Ω−) : v|Γ0
= 0} and a(u, v) :=

∫
Ω−
∇u · ∇v .

On the other hand, Green’s formula applied in Ω+ to the solution to
problem (3) and the fundamental solution of the bidimensional Laplacian,
G(x,y) := − 1

2π log |x − y|, yields the following integral representation formula
for u in Ω+ (cf. for instance [19]):

u(x) =

∫
Γ

u+(y)
∂G(x,y)

∂n(y)
dσy −

∫
Γ

G(x,y)
∂u

∂n

+

(y) dσy + u∞ ∀x ∈ Ω+. (6)

The first integral in (6) stands for the double layer potential with density u+

whereas the second integral represents the single layer potential with density
∂u
∂n

+
. The constant u∞ accounts for the asymptotic behavior of u at infinity

and can be computed from the trace of u and its normal derivative on Γ (see
[64]).

We remark that, once we know u+ and ∂u
∂n

+
, the solution to problem (3) can

be computed in any point of Ω+ using (6). Therefore, taking into account the
transmission conditions (4), to solve problem (1) it is enough to determine the

solution in the bounded domain Ω− and its normal derivative ∂u
∂n

−
. We need an

additional condition relating these two unknowns. A usual choice is to consider
the integral equation derived from (6) as x tends to Γ (cf. [19]):

1

2
u = K̂u− V̂ ∂u

∂n
+ u∞ on Γ, (7)

where K̂ and V̂ denote, respectively, the double layer and the single layer
operators, formally defined as the corresponding potentials. On the other hand,
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the asymptotic behavior of u at infinity and (6) imply that
∫
Γ

∂u
∂n
dσ = 0. Then,

the integral equation (7) can be tested with functions of zero mean on Γ, so
that the constant u∞ disappears (it can be recovered testing (7) with a constant
function).

Equations (5) and (7) are the basis of the BEM-FEMmethod analyzed in [48]
by C. Johnson and J.-C. Nédélec. Until very recently (see [65]), it was thought

that this method only worked well if the double layer operator K̂ was compact.
As a result, the choice of a smooth coupling boundary Γ was mandatory for
the Laplace equation. In other applications, such as linear elasticity (where
the double layer operator is never compact), this formulation is not used. In
addition, this procedure leads to nonsymmetric systems of linear equations. For
these reasons, M. Costabel [21] and H.D. Han [46] introduced the symmetric
method of coupling boundary elements and finite elements. This method is
based on adding a second integral equation on the coupling boundary:

1

2

∂u

∂n
= −Ŵu− K̂∗ ∂u

∂n
on Γ,

where Ŵ is the hypersingular operator and K̂∗ is the adjoint of the double layer
operator. We recall from [49] that, for the Laplacian, the hypersingular operator
can be expressed in terms of the single layer operator as follows:

Ŵ = − ∂

∂t
V̂ ∂
∂t

.

In the symmetric method, the compactness of the double layer operator does
not play any role. Then, it is possible to choose a polygonal curve as coupling
boundary and this is, in fact, what all the authors do. However, this choice
leads to additional difficulties in the approximation of the boundary terms,
that include integrals with singular kernels. Moreover, in this case we do not
know how to analyze the effect of numerical quadrature on convergence.

In [43], we followed [56] and choose a smooth coupling boundary Γ. Using
a parametrization of Γ, we obtain a new version of the symmetric method
for exterior boundary value problems in the plane. The new formulation is
equivalent to the standard symmetric method introduced in [21, 46], but allows
to approximate the singular integrals from the boundary element method using
only low order quadrature formulas. In addition, with this approach it is possible
to analyze the effect of numerical quadrature on convergence, which is in fact
the main contribution in [43].

In what follows, we assume that Γ is of class C∞ and let x : R → R
2 be a

1-periodic parametrization of Γ. We consider the 1-periodic Sobolev space of
index 1/2, defined by

H1/2 :=
{
φ ∈ L2[0, 1] :

∞∑
m=−∞

(1 +m2)1/2 |φ̂(m)|2 <∞
}
,

where φ̂(m) :=
∫ 1
0
φ(s) e−2πims ds, for m ∈ Z, are the Fourier coefficients of φ.

We denote by H−1/2 the dual space of H1/2, and by (·, ·) the duality product
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between H−1/2 and H1/2. We consider parametrized versions, V and K, of
the single and double layer operators (cf. [43, Section 1.2]), that inherit the
properties of the standard ones. Indeed, V : H−1/2 → H1/2 is continuous and

elliptic on H
−1/2
0 := {η ∈ H−1/2 : (η, 1) = 0}, and K : H1/2 → H1/2 is

compact.
Then, introducing the parametrization x in the integrals over Γ that appear

in the symmetric method, we derive a new continuous BEM-FEM formulation,
equivalent to the one introduced in [21, 46]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

find u ∈ V and ξ ∈ H−1/20 such that

a(u, v) + d(u, v)− c(v, ξ) = (f, v)L2(Ω−) ∀ v ∈ V

c(u, η) + b(ξ, η) = 0 ∀ η ∈ H−1/20

(8)

where, for simplicity, we substitute the unknown ∂u
∂n

+
by ξ := |x′|

(
∂u
∂n

+ ◦ x
)
,

and for any ξ, η ∈ H−1/2 and u, v ∈ H1(Ω−), define b(ξ, η) := (η,Vξ),
d(u, v) := b(γ(u)′, γ(v)′) and

c(v, η) :=

(
η,

(
1

2
I − K

)
γ(v)

)
,

where γ : H1(Ω−) → H1/2 is the parametrized trace, that extends the map
u 	→ γ(u) := u|Γ ◦ x. Existence and uniqueness of a solution to (8) are a
consequence of Lax–Milgram’s Lemma and the properties of the single and
double layer operators.

In [43] the discrete problem is defined using a regular family of exact
triangulations {T −h }h of the bounded domain Ω− (cf. [73]), that contains
straight triangles and triangles with exactly one curved side (the one that fits
the coupling boundary). The corresponding finite element subspaces, Vh ⊂ V ,
are defined using Lagrange curved finite elements of order one on the curved
triangles combined with Lagrange finite elements of the same order over the
straight triangles, so that global finite element functions are continuous in Ω−.

To approximate the unknown ξ, a family of subspaces Hh ⊂ H
−1/2
0 consisting

of 1-periodic splines of order one over a uniform partition of the real line,
si := ih, i ∈ Z, are used. Using interpolation error bounds on curved triangles
and an approximation result from [68] we derive optimal error estimates. We
remark that this method can be generalized without any difficulty to higher
order approximations. It is also possible to consider different approximating
functions on an independent mesh of the boundary; for instance, we could use
trigonometric polynomials (see [59, 60]). On the other hand, the use of ideal
triangles could be avoided (see [64]).

In practice, it is not possible to compute exactly some coefficients of the
linear system obtained from the discretization process and it is necessary the
use of quadrature formulas. We describe next the quadrature formulas used to
approximate the integrals of the discrete problem:
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• Integrals over a triangle T ∈ T −h . We consider a quadrature formula of
order zero over a reference (straight) triangle and define the corresponding
formula over a triangle T ∈ T −h through a change of variables. In this way,
we define approximations ah(·, ·) and lh(·) of the bilinear form a(·, ·) and
the linear form l(·) := (f, · )L2(Ω−), respectively.

• Approximation of the bilinear form b(·, ·). The single layer operator, V ,
shows a singularity of logarithmic type. Then, to approximate the
associated bilinear form, b(·, ·), we decompose the integrand as in
G.C. Hsiao et al. [47], so that it can be written as a sum of a C∞ function,

F (s, t) :=

⎧⎪⎨⎪⎩log
|x(s)− x(t)|2

(s− t)2 if s 
= t,

log |x′(s)|2 if s = t,

and a term that can be computed exactly. Let �̂2 be a quadrature formula
of order one on the unit square. Then, the bilinear form bh : Hh×Hh → R

is defined by

bh(ξh, ηh) :=

N∑
i,j=1

ξh|(si−1,si)ηh|(si−1,si)b̃i,j ∀ ξh, ηh ∈ Hh,

where, for i, j = 1, . . . , N ,

b̃i,j := −
1

4π
h2 (�̂2(F (si−1 + h ·, sj−1 + h ·)) + log h2 +Bi−j),

with

(i, j) :=

⎧⎪⎨⎪⎩
(i, j) if |i− j| ≤ N/2,

(i, j +N) if i− j > N/2,

(i, j −N) if j − i > N/2,

and B0 = −3, B1 = 4 log(2)− 3 and for k ≥ 2,

Bk = 2 log(k)−
∞∑

n=1

1

n(n+ 1)(2n+ 1)

1

k2n
.

• Approximation of the bilinear form d(·, ·). We define the bilinear form
dh : Vh × Vh → R by

dh(uh, vh) :=

N∑
i,j=1

γu(si) γv(sj) d̃i,j ∀uh, vh ∈ Vh,

where, for i, j = 1, . . . , N , d̃i,j :=
(
b̃i,j − b̃i,j+1 − b̃i+1,j + b̃i+1,j+1

)
/h2.
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• Approximation of the bilinear form c(·, ·). Let vh ∈ Vh and ηh ∈ Hh. We
remark that γ(vh) ∈ Th, where

Th := {ηh ∈ C(R) ; ηh 1-periodic and ηh|(si−1,si) ∈ P1 ∀ i ∈ Z}.

Let {li}N
i=1 be the nodal basis of Th. We compute (ηh, γvh) exactly, so

that it only remains to approximate the coefficients

ci,j :=

∫ sj

sj−1

(∫ si+1

si−1

K(s, t)li(t) dt

)
ds i, j = 1, . . . , N,

where K(·, ·) is the kernel of the double layer operator K. Since K(·, ·) is
a function of class C∞, we can use �̂2 to define the approximations

c̃i,j := h2�̂2
(
K(sj−1+h·, si−1+h·)li(si−1+h·)+K(sj−1+h·, si+h·)li(si+h·)

)
,

Then, we define the bilinear form ch : Vh ×Hh → R by

ch(vh, ηh) :=
h

4

N∑
j=1

ηj

(
γv(sj−1) + γv(sj)

)
−

N∑
i,j=1

ηjγv(si)c̃i,j .

We proved in [43] that the fully discrete scheme based on these
approximations:⎧⎪⎪⎨⎪⎪⎩

find u∗h ∈ Vh and ξ∗h ∈ Hh such that

ah(u
∗
h, vh) + dh(u

∗
h, vh)− ch(vh, ξ

∗
h) = lh(vh) ∀ vh ∈ Vh

ch(u
∗
h, ηh) + bh(ξ

∗
h, ηh) = 0 ∀ ηh ∈ Hh

(9)

is well posed for h sufficiently small and derived optimal error estimates. More
precisely, if f ∈ W 1,∞(Ω−) and u ∈ H2(Ω−), then there exists a constant C > 0,
independent of h, such that

‖u− u∗h‖H1(Ω−) + ‖ξ − ξ∗h‖H−1/2 ≤ Ch

(
‖u‖H2(Ω−) + ‖f‖W 1,∞(Ω−)

)
.

The fully discrete scheme (9) can be implemented in the computer directly.
However, this method leads to a system of equations of the form:(

A+D Ct

C −B

)(
u∗h
ξ∗h

)
=

(
f
0

)
, (10)

whereA andB are symmetric and positive definite matrices, andD is symmetric
and semidefinite; moreover, A is a sparse matrix whereas B, C and D are dense
matrices. Therefore, one has to solve a symmetric indefinite linear system of
equations which, in addition, is ill-conditioned and badly structured. The use
of an efficient iterative solver is then necessary.
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We proposed an algorithm based on a preconditioning technique due to
J.H. Bramble and J.E. Pasciak [7]. The idea is to transform the original
system (10) into an equivalent one, with a symmetric and positive definite
matrix in a certain inner product. Indeed, let R be a preconditioner of matrix A.
Then, the system of linear equations(

R−1(A+D) R−1Ct

CR−1(A+D)− C B + CR−1Ct

)(
u∗h
ξ∗h

)
=

(
R−1f
CR−1f

)
, (11)

is equivalent to system (10). We proved that the matrix of the linear system (11)
is symmetric and positive definite in the inner product[(

uh

ξh

)
,

(
vh

ηh

)]
:= ((A+D −R)uh, vh)L2(Ω−) + (ξh, ηh).

Therefore, (11) can be solved by a preconditioned conjugate gradient method
in the inner product [·, ·]. Moreover, using Theorem 1 in [7], we showed that
(11) can be preconditioned easily using only a preconditioner P of B (cf. [43]
for more details).

This technique allows to uncouple the problem, since in each iteration we
solve independently a problem using BEM and another problem using FEM.
The method requires two preconditioners, one for the FEM stiffness matrix A
and another one for the matrix associated with the single layer operator, B.
Numerical experiments confirm the theoretical results and show that the algo-
rithm is optimal in the sense that the number of iterations is independent of
the discretization parameter.

Extension to nonlinear elliptic problems. The standard symmetric
method was applied successfully to nonlinear boundary value problems that
become homogeneous and linear with constant coefficients outside a bounded
region (cf. [23, 37]). In these extensions, the error analysis is done assuming that
the nonlinear operator is strongly monotone and Lipschitz-continuous, since in
this case a Céa-type estimate is available. The parametrized version of the
symmetric method can be extended fairly straightforward to this case (cf. [43]).
The analysis of the continuous problem follows [37] and is based on the theory
of monotone operators and Banach Fixed Point Theorem. The analysis of the
discrete problem, based on a Céa type estimate, required to prove a technical
result on the approximation in Sobolev spaces of non-integer index (which is
a generalization of a result given in [70]). In addition, we analyzed a fully
discrete scheme defined using only low order quadrature formulas. The analysis
relies on a Strang-type inequality and on the analysis of the effect of numerical
quadratures in the FEM for a nonlinear equation (cf. [25]).

On the other hand, J. Xu [71] introduced a technique to carry out the nu-
merical analysis of nonlinear problems in bounded domains without using a
Céa estimate. The idea is to linearize the nonlinear partial differential equa-
tion around an isolated solution and consider the finite element discretization of
the linearized problem. In [58] we extended this technique to analyze exterior
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nonlinear problems without using discrete Green functions, at the expense of
certain restrictions in the type of nonlinearity. We cannot deal with the general
case because we do not know bounds for discrete Green functions associated
with BEM–FEM formulations. Existence of a solution to the discrete problem
and error estimates are derived applying Brouwer’s Fixed Point Theorem; lo-
cal uniqueness is also proved. The main contribution is the analysis of a fully
discrete nonlinear BEM–FEM formulation without using Strang’s lemma. We
proved that the method described in [71] can be completed in this case to study
the effect of numerical quadratures on convergence. This question remained
open even in the bounded case and still is for a general nonlinear equation.

Nonlinear parabolic-elliptic problems. In [22], M. Costabel et al. applied
the symmetric method to an exterior linear parabolic-elliptic problem. They
used the Crank–Nicolson method for the time discretization and proved conver-
gence of the solutions to the discrete schemes and theoretical error estimates.
In [44], we applied the parametrized version of the symmetric method to a non-
linear parabolic-elliptic problem in the plane. This kind of problems appears in
the modeling of quasi-stationary electromagnetic fields. The discrete problem is
defined using the backward Euler method for the time discretization and an ex-
act triangulation of the bounded domain. The analysis follows essentially [72]:
existence, uniqueness, convergence of the discrete solutions and optimal error
estimates are derived assuming that the nonlinear operator is strongly mono-
tone and Lipschitz-continuous. In addition, we proposed a fully discrete scheme
using only quadrature formulas of low order and, under some additional condi-
tions on the nonlinear operator, proved that the order of convergence is optimal.

Extensions to elasticity. In [23, 36], the symmetric method was applied to a
problem of three-dimensional elasticity theory, where an elastoplastic material
is embedded into a linear elastic material. In two dimensions, this problem
was analyzed in [16]. In [57] we generalized the parametrized version of the
symmetric method to study an homogeneous isotropic linear elastic material in
an exterior domain of the plane. In this case, the solution in the exterior region
is given by Betti-Somigliana’s formula (cf. [19]), and can be computed once we
know the values of the solution and its traction on the coupling boundary. We
solved the difficulties that result from the singularities of the integral operators
and proposed a fully discrete scheme based on the use of quadrature formulas of
low order. Optimal error estimates are derived and a preconditioning technique
based on that of [7] is suggested to solve the corresponding linear systems. In
[43] we showed that this technique can also be applied to the problem considered
in [16] and proposed a fully discrete scheme that entails a great computational
saving.
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3 Dual-dual mixed methods in fluid mechanics

In this section we recall a dual-dual mixed finite element method to solve
a class of quasi-Newtonian Stokes flows and discuss its application to the
generalized Stokes problem. Mixed finite element methods are widely used to
solve boundary value problems because they allow to approximate unknowns of
physical interest directly. The standard mixed finite element method introduces
the flux as an additional unknown; then, the gradient is expressed in terms of
the flux and an integration by parts is done (cf. for instance [8, 42]).

When the constitutive law cannot be inverted explicitly, two basic strategies
are available to obtain a mixed formulation. One possibility consists in inverting
the constitutive law using the implicit function theorem (cf. [61, 62, 51]).
The other strategy is based on introducing additional unknowns (preferably of
physical interest) and rewriting the problem as a twofold saddle point operator
equation, that is, the left-hand-side of the operator equation shows the following
structure: (

A B∗

B O

)
with A =

(
A1 B∗1
B1 O

)
, (12)

where B and B1 are linear bounded operators and A1 is a nonlinear operator.
This kind of formulations are called dual–dual formulations. It is important
to emphasize that no inversion process is required in their derivation, which
constitutes one of their main advantages.

Although the structure of (12) is very similar to the standard one, results
from [52, 53, 66] cannot be applied. Fortunately, the standard theory of
Babuška–Brezzi was generalized in [26] to deal with this kind of problems (see
also [35]). On the other hand, this type of formulations leads to the solution
of linear systems with a twofold saddle point structure, which are symmetric,
indefinite and ill-conditioned. Efficient iterative solvers are already available
(see [34, 32, 33]).

Dual-dual formulations were introduced in the context of coupling mixed
finite elements and boundary elements (cf. [31, 39, 33, 26]). The first dual-dual
method for a finite element discretization was analyzed in [32], where a linear
second-order elliptic equation in divergence form is considered and, besides the
scalar unknown u and the flux, the gradient ∇u is introduced as a third explicit
unknown1. Then, this technique was applied in [35] to obtain a fully discrete
dual-dual formulation of a nonlinear elliptic problem in divergence form. Dual-
dual formulations were also used in nonlinear elasticity, where the strain tensor
is introduced as additional unknown (cf. [3] for a dual-dual formulation of a
hyperelastic material and [40] for the incompressible case).

Concerning the derivation of dual-dual formulations in fluid mechanics, we
considered in [29] a class of quasi-Newtonian Stokes flows, and extended the

1The idea of introducing the gradient as an additional unknown was suggested by
G.N. Gatica and W.L. Wendland [41] in the context of coupling mixed finite elements and
boundary elements. It was also used in T. Arbogast et al. [1] and in Z. Chen [17, 18], where
it was called expanded mixed finite element method. Additional variables are also used in
least-squares finite element methods (see, e.g. [13]).
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procedure in [11] to the generalized Stokes problem. The mixed finite element
methods proposed in [29, 11] simply rely on the introduction of the flux and the
tensor gradient of the velocity as additional unknowns. Then, the variational
formulation is written as a twofold saddle point operator equation, so that the
abstract theory developed in [26] can be applied to prove that the continuous
and discrete schemes are well posed. In particular, we showed that the stability
of the Galerkin schemes can be ensured using only low-order finite element
subspaces. We remark that the usual Stokes equations are included in the class
of problems considered in [29], so that we obtained, as a by-product, a new
mixed finite element method for the Stokes problem.

Next we describe the derivation of a low-order mixed FEM based on a dual-
dual formulation for quasi-Newtonian Stokes flows. We let Ω be a bounded
domain in R

2 with a Lipschitz-continuous boundary Γ, and consider a nonlinear
Stokes fluid occupying the region Ω under the action of an external force. Let
ψ : R

+ → R
+ be the nonlinear kinematic viscosity function of the fluid. Given

f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2, we look for the velocity u := (u1, u2)
t and the

pressure p such that:⎧⎨⎩
−div (ψ(|∇u|)∇u − p I ) = f in Ω,

div(u) = 0 in Ω,
u = g on Γ.

(13)

We recall that the Dirichlet datum g must satisfy the compatibility condition∫
Γ

g · n ds = 0, (14)

where n is the unit outward normal to Γ.
This kind of nonlinear Stokes problem arises in the modeling of a large

class of non-Newtonian fluids (biological fluids, lubricants, paints and polymeric
fluids among others). In particular, the Ladyzhenskaya law for fluids with large
stresses (see [50]), the power law used to model many polimeric solutions and
melts (see [45]), and the Carreau law, used to model viscoplastic flows and
creeping flow of metals (see, e.g. [54, 67]), are included in this framework.
For the nonlinear model satisfying the power law, a dual-mixed variational
formulation based on inverting the relation σ̃ = ψ(|∇u|)∇u to obtain ∇u as
an explicit function of σ̃ was studied in [55]. However, this procedure cannot
be applied to the Carreau law since in this case such explicit inversion formula
is not available.

To derive a dual-dual mixed variational formulation for the boundary value
problem (13), we introduce the flux, σ := ψ(|∇u|)∇u − p I, and the tensor
gradient of the velocity, t := ∇u, as additional unknowns. Let us denote by
ψ(r) := (ψ(|r|) rij), for all r ∈ R

2×2. Then, the nonlinear constitutive law and
the equilibrium equation become, respectively,

σ = ψ(t) − p I and − div(σ) = f in Ω. (15)

In addition, since div(u) = tr(∇u), the incompressibility condition can be
rewritten as tr(t) = 0 in Ω. Multiplying the relation t = ∇u by a tensor
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τ , integrating by parts, using that u = g on Γ and testing appropriately the
equations in (15) and the incompressibility condition, we obtain the following
mixed variational formulation of (13): find (t,σ, p,u, ξ) ∈ [L2(Ω)]2×2 ×
H(div; Ω)× L2(Ω)× [L2(Ω)]2 × R such that∫

Ω

ψ(t) : s−
∫
Ω

σ : s−
∫
Ω

p tr(s) = 0,

−
∫
Ω

τ : t−
∫
Ω

q tr(t)−
∫
Ω

u · div(τ ) + ξ

∫
Ω

tr(τ ) = −〈τn,g〉Γ,

−
∫
Ω

v · div(σ) + η

∫
Ω

tr(σ) =

∫
Ω

f · v,

(16)

for all (s, τ , q,v, η) ∈ [L2(Ω)]2×2 × H(div; Ω) × L2(Ω) × [L2(Ω)]2 × R. We
introduce in (16) the additional unknown ξ, which is a Lagrange multiplier
associated with the restriction

∫
Ω
tr(σ) = 0, added to ensure uniqueness

(see [8]). Actually, we know in advance that ξ = 0 , but we keep this artificial
unknown to ensure the symmetry of the whole formulation.

Next, we remark that (16) has a twofold saddle point structure. Indeed,
let us introduce the spaces X1 := [L2(Ω)]2×2, M1 := H(div; Ω) × L2(Ω) and
M := [L2(Ω)]2×R, and define the operators A1 : X1 → X ′1, B1 : X1 →M ′

1 and
B :M1 →M ′ as follows:

[A1(r), s] :=

∫
Ω

ψ(r) : s , [B1(r), (τ , q)] := −
∫
Ω

τ : r −
∫
Ω

q tr(r),

[B(τ , q), (v, η)] := −
∫
Ω

v · div(τ ) + η

∫
Ω

tr(τ ),

for all r, s ∈ X1, (τ , q) ∈ M1 and (v, η) ∈ M , where [·, ·] stands for the
duality pairing induced by the corresponding operators. Then, with the previous
definitions for A1, B1 and B, (16) can be written as an operator equation with a
matrix operator of the form (12). Under suitable assumptions on the nonlinear
kinematic viscosity function ψ (see equations (1.2) and (1.3) in [29]), we proved
that the continuous formulation (16) is well posed. The proof reduces to show
that the hypotheses of Theorem 2.4 in [26] are satisfied.

In order to define the corresponding mixed finite element scheme, we assume
for simplicity that Γ is a polygonal curve, and let {Th}h>0 be a regular family
of triangulations of Ω by triangles T of diameter hT such that h := max { hT :
T ∈ Th } and Ω = ∪{T : T ∈ Th }. For each T ∈ Th, we let RT 0(T ) be the
local Raviart-Thomas space of lowest order and, for any non-negative integer
k, we denote by Pk(T ) the space of polynomials defined on T of degree ≤ k.
Then, we introduce the following finite element subspaces:

X1,h :=
{
s ∈ [L2(Ω)]2×2 : s|T ∈ [P0(T )]2×2 ∀T ∈ Th

}
,

Mσ1,h := {τ := (τij) ∈ H(div; Ω) : (τi1 τi2)
t|T ∈ RT 0(T ) i = 1, 2 , ∀T ∈ Th} ,

Mp
1,h := { q ∈ L2(Ω) : q|T ∈ P0(T ) ∀T ∈ Th },
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Mu
h := {v ∈ [L2(Ω)]2 : v|T ∈ [P0(T )]2 ∀T ∈ Th }.

We showed that the corresponding Galerkin scheme has a unique solution
(th,σh, ph,uh, ξh) ∈ X1,h × Mσ1,h × Mp

1,h × Mu
h × R . Furthermore, using a

Céa estimate and the approximation properties of the subspaces X1,h, M
σ
1,h,

Mp
1,h and Mu

h , that follow from classical error estimates for projection and
equilibrium interpolation operators (see e.g. [63]), we obtained the following
rate of convergence. If t ∈ [H1(Ω)]2×2, σ ∈ [H1(Ω)]2×2, div(σ) ∈ [H1(Ω)]2,
p ∈ H1(Ω) and u ∈ [H1(Ω)]2, then there exists C > 0, independent of h, such
that

‖(t,σ, p,u, ξ)− (th,σh, ph,uh, ξh)‖ ≤ C h
(
‖t‖[H1(Ω)]2×2+

+‖σ‖[H1(Ω)]2×2 + ‖div(σ)‖[H1(Ω)]2 + ‖p‖H1(Ω) + ‖u‖[H1(Ω)]2

)
.

Recently, V.J. Ervin et al. [24] recasted the formulation introduced in [29]
in appropriate Sobolev spaces, providing tighter error estimates for the
approximate solution and showing that higher-order approximating spaces can
be used.

On the other hand, the application of adaptive algorithms based on
a posteriori error estimates usually guarantees the quasi-optimal rate of
convergence of the finite element solution to a boundary value problem. These
techniques are specially useful for nonlinear problems, where no a priori hints on
how to build suitable meshes are available. As shown in [3, 40], the combination
of the usual Bank-Weiser approach from [2] with the analysis from [9] and [10]
allows to derive fully explicit and reliable a posteriori error estimates for dual-
dual variational formulations. In [30] we followed [3] and obtained reliable and
quasi-efficient a posteriori error estimators for the nonlinear Stokes problems
analyzed in [29]. Numerical experiments illustrate the performance of the mixed
finite element scheme and confirm the reliability and quasi-efficiency of the
a posteriori error estimators. They also show that the associated adaptive
algorithm is much more efficient than a uniform refinement procedure.

As we mentioned before, in [11] we applied the approach from [29] to
derive a low-order mixed FEM for the generalized Stokes problem. The
generalized Stokes problem is a Stokes-like linear system with a dominating
zeroth order term. This problem arises naturally in the time discretization
of the corresponding non-steady equations and hence, plays a fundamental
role in the numerical simulation of viscous incompressible flows (laminar and
turbulent). Indeed, the most expensive part of the solution procedure for the
time-dependent Navier-Stokes equations reduces to solve the generalized Stokes
problem at each nonlinear iteration. Given f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2,
we look for the velocity u := (u1, u2)

t and the pressure p of a fluid occupying
the region Ω, and such that⎧⎨⎩ αu − νΔu + ∇p = f in Ω,

div(u) = 0 in Ω,
u = g on Γ.

(17)
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where ν > 0 is the kinematic viscosity of the fluid, that we assume constant,
and α is a positive parameter proportional to the inverse of the time-step (we
may assume, without loss of generality, that α ≥ ν). We recall that, due
to the incompressibility of the fluid, the Dirichlet datum g must satisfy the
compatibility condition (14).

Now, we proceed as in [29] and introduce the tensor gradient of the velocity
t := ∇u and the flux σ := ν∇u − p I as additional unknowns in Ω. In
this way, we obtain a mixed variational formulation of problem (17) that
shows a twofold saddle point structure (see (12)). Indeed, let us define the
spaces X1 := [L2(Ω)]2×2 × [L2(Ω)]2, M1 := H(div; Ω), X := X1 × M1 and
M := L2(Ω) × R, and the operators A1 : X1 → X ′1, B1 : X1 → M ′

1 and
B : X →M as follows:

[A1(s,v), (r,w)] := ν

∫
Ω

s : r+ α

∫
Ω

v ·w,

[B1(s,v), τ ] := −
∫
Ω

τ : s−
∫
Ω

div(τ ) · v,

[B(s,v, τ ), (q, η)] := −
∫
Ω

q tr(s) + η

∫
Ω

tr(τ ),

for all (s,v), (r,w) ∈ X1, τ ∈ M1 and (q, η) ∈ M . Then, the variational
formulation of (17) can be set equivalently as: find ((t,u,σ), (p, ξ)) ∈ X ×M
such that (

A B∗

B O

) (
(t,u,σ)
(p, ξ)

)
=

(
F
O

)
, (18)

where A is defined as in (12) and [F, (s,v, τ )] :=
∫
Ω

f · v − 〈τn,g〉Γ. Using
the abstract theory from [26], we proved that problem (18) has a unique
solution ((t,u,σ), (p, ξ)) ∈ X ×M , and that there exists a positive constant

C(α, ν) = O( α3

ν ) such that

‖((t,u,σ), (p, ξ))‖X×M ≤ C(α, ν)
(
‖f‖L2(Ω) + ‖g‖H1/2(Γ)

)
. (19)

The corresponding Galerkin scheme is defined using the same finite element
subspaces as in [29] for the unknowns u, σ and p. However, to guarantee
stability, the approximating space of the tensor gradient of the velocity, t, has
to be suitably enriched. Indeed, we have to include the deviator of the vector
Raviart-Thomas space of lowest order, that is, we define

Xt
1,h := {s ∈ [L2(Ω)]2×2 : s|T ∈ A0(T ) ∀T ∈ Th },

where

A0(T ) := [P0(T )]2×2 ⊕
〈 {(

x1 2x2
0 −x1

)
,

(
−x2 0
2x1 x2

)} 〉
.

We proved that the discrete scheme is well-posed and derived the corresponding

rate of convergence, in which a constant C̄(α, ν) = O( α3

ν ) is involved.
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Theoretical results suggest that the rate of convergence is affected by large
values of α, which, nevertheless, is not too severe in the numerical experiments
(see [11]). Further, since α is proportional to the inverse of the time-step,
Δt, the estimates also lead us to think that the convergence of time-dependent
solutions should deteriorate as Δt decreases.

We followed [3, 30] and developed an a posteriori error analysis based
on local problems. In this way, we obtained reliable and quasi-efficient
a posteriori error estimators, that depend on the choice of two auxiliary
functions. Numerical experiments confirm the reliability and quasi-efficiency
of the estimators and illustrate the ability of the associated adaptive algorithm
to localize the boundary layers, inner layers and singularities of the solution.
Moreover, according to the theory, one would expect effectivity indexes between

O(α−1) and O( α3

ν ). However, we observe in practice that they all lie on
ranges much tighter than that, they do not deteriorate as the number of
degrees of freedom increases and, in addition, they improve from uniform to
adaptive refinements. The above observations yield the conjecture that these
constants are overestimated. To conclude, this mixed method is perhaps not so
competitive for extremely large values of α, but constitutes a good alternative
for moderately large values of this parameter. Numerical experiments show that
the adaptive algorithm is much more efficient than a uniform refinement when
solving the discrete scheme.

Most approaches to the problems considered in [29, 11] deal with the usual
pressure-velocity formulation, in which the velocity lives in [H1(Ω)]2. This
means, in particular, that the finite element subspace for the velocity needs to
be a subset of the continuous functions. In addition, the Dirichlet boundary
condition, being essential and non-homogeneous, cannot be incorporated either
in the continuous and discrete formulations or in the definitions of the spaces
involved, and therefore one is necessarily led to a non-conforming Galerkin
scheme (certainly, we refer to the theoretical analysis of the method, since the
interpolation of essential boundary conditions does not cause any difficulty
in practice). In turn, in a dual-mixed setting the velocity becomes an
unknown in [L2(Ω)]2, which gives more flexibility to choose the associated
finite element subspace (for instance, piecewise constant functions are a feasible
choice). Furthermore, the Dirichlet boundary condition, being now natural, is
incorporated directly into the right hand sides of the continuous and discrete
formulations and hence, we avoid the error analysis of a non-conforming scheme.

Another important advantage of using dual-mixed methods, already pointed
out, is the possibility of introducing further unknowns of physical interest
(like the flux). These unknowns are then approximated directly, avoiding any
numerical postprocessing that could yield additional sources of error. Moreover,
the conservativity properties are transferred to some of these unknowns (for
instance, continuity of the normal components of the flux), which, as we have
seen, can be approximated with finite elements of very low order as well. Finally,
we recall that the derivation of finite element subspaces guaranteeing unique
solvability and stability of the Galerkin schemes for dual-dual formulations in
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elasticity and fluid mechanics was unified in [12].

4 A posteriori error analysis of augmented mixed finite element
methods in elasticity

In this section we consider the augmented mixed finite element method
introduced in [27] for the linear elasticity system in the plane and outline a
residual-based a posteriori error analysis developed in [4] in the case of pure
homogeneous Dirichlet boundary conditions. The analysis in the case of mixed
boundary conditions can be found in [5].

Let Ω be a simply connected domain in R
2. We assume, for simplicity, that

Ω has a polygonal boundary Γ. Given a volume force f ∈ [L2(Ω)]2, we consider
the problem of computing the displacements u and the stress tensor σ of a
linear elastic material occupying the region Ω and such that⎧⎨⎩ σ = C e(u) in Ω,

−div(σ) = f in Ω,
u = 0 on Γ.

(20)

Hereafter, e(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations

and C is the elasticity tensor determined by Hooke’s law:

C ζ := λ tr(ζ) I + 2μ ζ ∀ ζ ∈ [L2(Ω)]2×2 , (21)

where λ, μ > 0 are the Lamé constants.

Recently, a new stabilized mixed finite element method for plane linear
elasticity was presented and analyzed in [27]. The approach is based on
the introduction of suitable Galerkin least-squares terms arising from the
constitutive and equilibrium equations, and from the relation defining the
rotation γ in terms of the displacement, γ := 1

2 (∇u − (∇u)t). In
particular, given positive parameters, κ1, κ2 and κ3, independent of λ, the
following augmented variational formulation for problem (20) is proposed: find
(σ,u,γ) ∈ Ĥ0 := H0 × [H1

0 (Ω)]
2 × [L2(Ω)]2×2

skew
such that

A((σ,u,γ), (τ ,v,η)) = F (τ ,v,η) ∀ (τ ,v,η) ∈ Ĥ0, (22)

where [L2(Ω)]2×2
skew

:=
{
η ∈ [L2(Ω)]2×2 : η + ηt = 0

}
,

H0 :=

{
τ ∈ H(div; Ω) :

∫
Ω

tr(τ ) = 0

}
,

and the bilinear form A : Ĥ0 × Ĥ0 → R and the functional F : Ĥ0 → R are
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defined by

A((σ,u,γ), (τ ,v,η)) :=

:=

∫
Ω

C−1σ : τ +

∫
Ω

u · div(τ ) +

∫
Ω

γ : τ −
∫
Ω

v · div(σ)−
∫
Ω

η : σ

+ κ1

∫
Ω

(
e(u)− C−1σ

)
:
(
e(v) + C−1 τ

)
+ κ2

∫
Ω

div(σ) · div(τ )

+ κ3

∫
Ω

(
γ − 1

2
(∇u− (∇u)t)

)
:

(
η +

1

2
(∇v − (∇v)t)

)
,

and

F (τ ,v,η) :=

∫
Ω

f · (v − κ2 div(τ ) ) .

We recall that it is easy to see from (21) that the inverse tensor C−1 reduces to

C−1 ζ :=
1

2μ
ζ − λ

4μ (λ+ μ)
tr(ζ) I ∀ ζ ∈ [L2(Ω)]2×2.

Assume that (κ1, κ2, κ3) is independent of λ and such that

0 < κ3 < κ1 < 2μ and 0 < κ2. (23)

Then, the bilinear form A(·, ·) is strongly coercive and continuous, and therefore,
problem (22) is well-posed (see Theorems 3.1 and 3.2 in [27]). In particular, if

we take κ2 =
1
μ

(
1− κ1

2μ

)
, then the stability constant depends only on μ,

1

μ
and Ω.

The augmented variational formulation (22), being strongly coercive, allows
to use arbitrary finite element subspaces to define the corresponding discrete
scheme. This constitutes one of its main advantages, as compared with
the traditional mixed finite element schemes for the linear elasticity problem
(see [8]). Indeed, given a finite element subspace Ĥ0,h := Hσ0,h×Hu

0,h×H
γ
0,h ⊆

Ĥ0, the Galerkin scheme associated to (22) reads: find (σh,uh,γh) ∈ Ĥ0,h

such that

A((σh,uh,γh), (τ h,vh,ηh)) = F (τ h,vh,ηh) ∀ (τ h,vh,ηh) ∈ Ĥ0,h. (24)

If the parameters κ1, κ2 and κ3 satisfy (23), then the discrete problem (24)
is well-posed for any arbitrary choice of the subspace Ĥ0,h. In particular, it
is possible to use Raviart-Thomas spaces of lowest order to approximate the
stress tensor σ, piecewise linear elements for the displacement u, and piecewise
constants for the rotation γ. The rate of convergence of (24) for this specific
finite element subspace is given in Theorem 4.2 in [27].

As compared with more traditional mixed methods, such as PEERS and
BDM, and besides the fact of being able to choose any finite element subspace,
the augmented approach presents other important advantages. Indeed, it
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becomes a much cheaper alternative since the global number of degrees of
freedom in terms of the number of triangles is much smaller (see [4, Section 5]).
In addition, if we choose the finite element subspace of the lowest order, the
augmented scheme (24) yields simpler computations.

The competitive character of the augmented mixed finite element method
(24) motivated the derivation of a posteriori error estimators for this scheme.
We need to introduce some notations. Let {Th}h>0 be a regular family of
triangulations of Ω by triangles T of diameter hT such that h := max { hT :
T ∈ Th } and Ω = ∪{T : T ∈ Th }. Given T ∈ Th, we let E(T ) be the set of its
edges and let Eh(Ω) be the set of all interior edges of the triangulation Th. In
what follows, he stands for the length of edge e. Further, given τ ∈ [L2(Ω)]2×2
(such that τ |T ∈ C(T ) on each T ∈ Th), an edge e ∈ E(T )∩Eh(Ω) and the unit
tangential vector t along e, we denote by J [τt] the tangential jump across e,
that is, J [τt] := (τ |T − τ |T ′)|et, where T ′ ∈ Th is such that T ∩ T ′ = e. We
recall that t := (−n2, n1)t, where n := (n1, n2)

t is the unit outward normal to
∂T . The normal jumps J [τn] are defined analogously.

Then, if (σ,u,γ) ∈ Ĥ0 and (σh,uh,γh) ∈ Ĥ0,h are, respectively, the
solutions to the continuous and discrete formulations, (22) and (24), we define
the error indicator θT , for any T ∈ Th, as follows:

θ2T := ‖f + div(σh)‖2[L2(T )]2 + ‖σh − σt

h‖2[L2(T )]2×2

+‖γh − 1
2 (∇uh − (∇uh)

t)‖2[L2(T )]2×2 + h2T ‖ curl(C−1σh + γh)‖2[L2(T )]2

+
∑

e∈E(T )

he ‖J [(C−1σh −∇uh + γh)t]‖2[L2(e)]2

+h2T ‖ curl(C−1(e(uh)− C−1σh))‖2[L2(T )]2

+
∑

e∈E(T )

he ‖J [(C−1(e(uh)− C−1σh))t]‖2[L2(e)]2

+h2T ‖div(e(uh)− 1
2 (C−1σh + (C−1σh)

t))‖2[L2(T )]2

+
∑

e∈E(T )∩Eh(Ω)

he ‖J [(e(uh)−
1

2
(C−1σh + (C−1σh)

t))n]‖2[L2(e)]2

+h2T ‖div(γh − 1
2 (∇uh − (∇uh)

t))‖2[L2(T )]2

+
∑

e∈E(T )∩Eh(Ω)

he ‖J [(γh −
1

2
(∇uh − (∇uh)

t))n]‖2[L2(e)]2 .

The residual character of each term involved in the definition of θT is quite
clear. In addition, we observe that some of these terms are known from residual
estimators for the usual (non-augmented) mixed finite element method in linear
elasticity (see, e.g. [15]). However, most of them are new since they arise from
the new Galerkin least-squares terms introduced in (22). Finally, we remark
that when σh|T ∈ [RT 0(T )t]2, uh|T ∈ [P1(T )]2 and γh|T ∈ [P0(T )]2×2, some
of the terms in the definition of θT vanish.
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As usual, θ :=

( ∑
T∈Th

θ2T

)1/2

is used as the global residual error estimator.

We proved in [4] that the a posteriori error estimator θ is reliable and efficient,
that is, there exist Ceff, Crel > 0, independent of h and λ, such that

Ceff θ ≤ ‖(σ − σh,u− uh,γ − γh)‖Ĥ0
≤ Crel θ . (25)

Reliability (upper bound in (25)) ensures that we obtain a numerical solution
with an accuracy below a prescribed tolerance. Local lower bounds are necessary
to ensure that the mesh is correctly refined so that one obtains a numerical
solution with a prescribed tolerance using a (nearly) minimal number of nodes.

To prove that θ is reliable, we combined a technique used in mixed finite
element schemes (see, e.g. [14, 15]) with the usual procedure applied to primal
finite element methods (see [69]). It is important to remark that just one of these
approaches by itself would not be enough in this case. Up to our knowledge,
this combined analysis seems to be applied in [4] for the first time. We provide
next a sketch of the proof.

We consider the following auxiliary problem: find z ∈ [H1
0 (Ω)]

2 such that{
−div(e(z)) = f + div(σh) in Ω,

z = 0 on Γ,
(26)

and define σ∗ := e(z), where z is the unique solution to problem (26). It
follows that σ∗ ∈ H0 and, because of the continuous dependence result, there
exists c > 0 such that

‖σ∗‖H(div;Ω) ≤ c ‖f + div(σh)‖[L2(Ω)]2 . (27)

In addition, it is easy to see that div(σ−σh −σ∗) = 0 in Ω. Then, using the
triangle inequality, that A is coercive and bounded, and (27), we obtain that
there exists C > 0, independent of h and λ, such that

C ‖(σ − σh,u− uh,γ − γh)‖Ĥ0
≤ ‖f + div(σh)‖[L2(Ω)]2 +

+ sup
0 �=(τ ,v,η)∈Ĥ0

div(τ )=0

A((σ − σh,u− uh,γ − γh), (τ ,v,η))

‖(τ ,v,η)‖Ĥ0

. (28)

It remains to bound the second term on the right hand side of (28). To
this end, we make use of the well-known Clément interpolation operator,
Ih : H

1(Ω)→ Xh, whereXh is the space of continuous piecewise linear functions
on Th, which satisfies the standard local approximation properties stated in [20].
We recall that Ih(v) ∈ Xh ∩H1

0 (Ω) for all v ∈ H1
0 (Ω).

Now, let (τ ,v,η) ∈ Ĥ0, (τ ,v,η) 
= 0, be such that div(τ ) = 0 in Ω.
Since we assume the domain Ω to be simply connected, there exists a stream
function ϕ := (ϕ1, ϕ2) ∈ [H1(Ω)]2 such that

∫
Ω
ϕi = 0, for i = 1, 2, and

τ = curl(ϕ). Then, we define ϕh := (ϕ1,h, ϕ2,h), with ϕi,h := Ih(ϕi) for



Exterior problems, mixed methods and a posteriori error analysis 127

i = 1, 2, and τh := curl(ϕh). Note that we can write τh = τh,0 + dh I, where

τh,0 ∈ Hσ0,h and dh =
R
Ω
tr(τ h)

2|Ω| ∈ R.

On the other hand, an immediate consequence of (22) and (24) is the
Galerkin orthogonality:

A((σ − σh,u− uh,γ − γh), (τh,vh,ηh)) = 0 ∀ (τ h,vh,ηh) ∈ Ĥ0,h . (29)

Let vh := (Ih(v1), Ih(v2)) ∈ Hu
0,h be the vector Clément interpolant of

v := (v1, v2) ∈ [H1
0 (Ω)]

2. Then, it follows from (29) that

A((σ − σh,u− uh,γ − γh), (τ ,v,η)) =

= A((σ − σh,u− uh,γ − γh), (τ − τh,0,v − vh,η)).
(30)

Since
∫
Ω
tr(σ −σh) = 0 and u− uh = 0 on Γ, using the orthogonality between

symmetric and skew-symmetric tensors, we obtain that

A((σ − σh,u− uh,γ − γh), (dhI,0,0)) = 0.

Hence, from (30) and (22) we deduce that

A((σ − σh,u− uh,γ − γh), (τ ,v,η)) =

= F (τ − τ h,v − vh,η) − A((σh,uh,γh), (τ − τh,v − vh,η)) .

According to the definitions of the forms A(·, ·) and F (·), taking into account
that div(τ − τ h) = div(curl(ϕ − ϕh)) = 0 and using again (29), we find
(after some algebraic manipulations) that

A((σ − σh,u− uh,γ − γh), (τ ,v,η)) =

∫
Ω

(f + div(σh)) · (v − vh)

+
1

2

∫
Ω

(σh − σt

h) : η − κ3

∫
Ω

(
γh −

1

2
(∇uh − (∇uh)

t)

)
: η

−
∫
Ω

(
(C−1σh −∇uh + γh) + κ1 C−1(e(uh)− C−1σh)

)
: (τ − τh)

− κ1
∫
Ω

(
e(uh)−

1

2
(C−1σh + (C−1σh)

t)

)
: ∇(v − vh)

+ κ3

∫
Ω

(
γh −

1

2
(∇uh − (∇uh)

t)

)
: ∇(v − vh).

(31)

The rest of the proof of reliability consists in deriving suitable upper bounds
for each one of the terms appearing on the right hand side of (31); we omit the
details and refer the reader to Section 3 in [4].

On the other hand, to show that the a posteriori error estimator θ is
efficient (lower bound in (25)), we proceed as in [14] and [15] and apply inverse
inequalities and the localization technique introduced in [69], which is based on
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triangle-bubble and edge-bubble functions (see Section 4 in [4] for more details).
We remark that, because of the new terms in the definition of θ (those involving
the curl and div operators and the normal and tangential jumps across the
edges of the triangulation), we needed to establish more general versions of
some technical lemmas concerning inverse estimates and piecewise polynomials
(see Lemmas 4.3-4.6 in [4]). The generality of these results allows to eventually
apply them not only in the present context, but also in the a posteriori error
analysis of other primal and mixed finite element methods.

We proposed the following adaptive algorithm, based on the a posteriori
error estimator θ, to compute the solutions of (24) (cf. [69]):

1. Start with a coarse mesh Th.

2. Solve the Galerkin scheme (24) for the current mesh Th.

3. Compute θT for each triangle T ∈ Th.

4. Consider stopping criterion and decide to finish or go to next step.

5. Use blue-green procedure to refine each element T ′ ∈ Th such that

θ′T ≥
1

2
max
T∈Th

θT .

6. Define resulting mesh as the new Th and go to step 2.

Numerical experiments underline the reliability and efficiency of the a posteriori
error estimator θ and strongly demonstrate that the associated adaptive
algorithm is much more suitable than a uniform discretization procedure when
solving problems with non-smooth solutions. The robustness of θ with respect
to the Poisson ratio and the ability of the adaptive algorithm to localize the
singularities and large stress regions of the solution are also illustrated.

We recognize that θ is certainly more expensive than, for instance, the
error indicator introduced in [6]. However, it is clear that the reliability and
efficiency of θ become more advantageous features than the sole reliability of the
estimator from [6]. Finally, in connection with the residual-based a posteriori
error estimator developed in [15] for PEERS and BDM, which is also reliable and
efficient, we point out that the advantage of θ, though a bit more expensive,
is still the freedom to choose the finite element subspaces in the augmented
scheme (24).

Finally, we mention that we have introduced an augmented primal-mixed
method for the linear elasticity problem in the plane (see [28]) that involves
four unknowns, namely: the displacement, the stress tensor, the strain tensor
of small deformations and the pressure. This new variational formulation relies
on the Hu-Washizu principle and was obtained by adding a least-squares term
that involves the strain tensor of small deformations. We established sufficient
conditions for the well-posedness of the corresponding Galerkin scheme and
described a way to obtain stable finite element subspaces from any stable pair
for the Stokes problem. Error estimates are also provided.
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équations aux dérivées partielles. (In French) Masson, Paris, 1991.

[64] F.-J. Sayas. A nodal coupling of finite and boundary elements. Numer.
Methods Partial Differential Equations, 19, no. 5, 555-570 (2003).

[65] F.J. Sayas. The validity of Johnson-Nédélec’s BEM-FEM coupling on
polygonal interfaces. SIAM J. Numer. Anal. (in revision).

[66] B. Scheurer. Existence et approximation de point selles pour certains
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