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EDITORIAL

Estimados socios:

En este nuevo ntmero del boletin recogemos una veintena de trabajos
presentados en la Conferencia Internacional Non-autonomous and Stochastic
Dynamical Systems and Multidisciplinary Applications (NSDS’09) celebrada en
honor del profesor Peter E. Kloeden, en conmemoracién de su sexagésimo
cumpleanos, que tuvo lugar en Sevilla, entre el 22 y el 26 de Junio del pasado
ano 2009.

El profesor Kloeden se ha destacado por sus contribuciones en todo tipo
de ecuaciones diferenciales, sistemas dinamicos y sus aplicaciones, recibiendo
recientemente el premio W. T. and Idalia Reid de la Society for Industrial and
Applied Mathematics (STAM) por sus contribuciones fundamentales en teoria y
analisis computacional de ecuaciones diferenciales.

La Conferencia, que se centrd en avances recientes en métodos topologicos,
teoria ergddica y nuevos desarrollos para sistemas dindmicos no auténomos y
sistemas dinamicos estocasticos, fue organizada por la Universidad de Sevilla y
conté con mas de una veintena de conferenciantes invitados y casi un centenar
de participantes. Queremos agradecer especialmente a dos de sus organizadores,
M? José Garrido y Pedro Marin, por su ayuda en la recopilacién de los trabajos
que presentamos aqui.

Recibid un cordial saludo,

Grupo Editor
boletin.sema@uclm.es
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PULLBACK ATTRACTOR FOR A NON-AUTONOMOUS
REACTION-DIFFUSION EQUATION IN SOME UNBOUNDED
DOMAINS

MARIA ANGUIANO

Dpto. Ecuaciones Diferenciales y Analisis Numérico
Universidad de Sevilla, Apdo. de Correos 1160,
41080-Sevilla (Spain)

anguianoQus.es

Abstract

The existence of a pullback attractor in L?*() for the following non-
autonomous reaction-diffusion equation

% — Au= f(u) + h(t), in Q x (7, +00),

u=0, on 9N X (1,+00), (1)
u(z,7) = ur(x), x€Q,
is proved in this paper, when the domain {2 is not necessarily bounded but
satisfying the Poincaré inequality, and h € L}, .(R; H ™' (Q)). The main
concept used in the proof is the asymptotic compactness of the process
generated by the problem.

Key words: pullback attractor, asymptotic compactness, evolution process,

non-autonomous reaction-diffusion equation.
AMS subject classifications: 35B41, 35Q85, 35Q30, 35K90, 37L30.

1 Introduction and setting of the problem

Let Q C RY be an open set, not necessarily bounded and suppose that €2
satisfies the Poincaré inequality, i.e., there exists a constant A\; > 0 such that

/ ()2 dz < /\1‘1/ V(o) de, Vu e HL(Q). @)
Q Q

Let us consider the following problem for a non-autonomous reaction-
diffusion equation with zero Dirichlet boundary condition in €2,

% — A= f(u)+ h(t), in Q x (7, +00),

u=0, on 9N x (1,+00), (3)
U,(JZ,T) = UT(x)v z €1,
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where 7 € R, u, € L?(Q), h € L2 (R;H () and f € C(R) satisfies that

loc

there exist constants a; > 0, as > 0,1 > 0, and p > 2 such that
—ay[s[” < f(s)s < —az|s|”, (4)

(f(s) = f(r)(s —7) <I(s—71)* Vr,s €R. (5)

The aim of this paper is to show the existence of a pullback attractor in the phase
space L2(2) for the problem (3) in the case of open domains not necessarily
bounded but satisfying the Poincaré inequality. This, and the fact that the non-
autonomous h belongs to the space L? (R; H~' (£2)), are the main novelties of
our problem.

The lack of compactness of the injection Hi(Q) < L%*(Q) (in the case of
unbounded domains) implies that the standard techniques previously used,
particularly the one involving the so-called flatenning property (see [6], [7], [12],
[14], amongst others), which have been successfully used when 2 is bounded
and h € L} (R; L?(Q)), do not work in our case.

Instead, we will use the asymptotic compactness already used in the case of
non-autonomous 2D-Navier-Stokes (see [1] and [2], see also [5] for a close result),
and which was previously used in [11] for the autonomous case. We would like
to emphasize that this technique seems to be the only one which allows to prove
the main result of this paper (namely Theorem 4) concerning the existence of
pullback attractor for our problem.

It is also worth mentioning that our problem has received much attention
over the last years in the case of a bounded domain or for a less general term h
(see [3], [7], [12], [14]).

Finally, the reader can find similar results for several variants of our model in
the references [9], [10], among others.

2 Existence and uniqueness of solution

We state in this section a result on the existence and uniqueness of solution of
problem (3). By || we denote the norm in L? (Q), by |V:| the norm in H} (Q)
and by ||-||, the norm in H~1 (Q). We will use (-, -) to denote the scalar product
in L2 (Q) and we will use (-,-) to denote the duality product between H ! (£2)
and H{ (Q).

Theorem 1 Suppose that Q) satisfies (2). Assume that f € C(R) satisfies (4)
and (5), and h € L? (R;H=*(Q)). Then, for all 7 € R, u, € L?(Q), there

loc
exists a unique solution u(t) = u(t; 7,u,) of (8) such that

w e L*(1,T; HY (Q) N LP (7, T; LP (Q)) VT >,

L (ut), v) ~ (But), ) = (F(u(), v)
+ (h(t),v), in D'(1,00), Yv € HE ()N LP(Q),
)

= U,.

—_—

u(
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Moreover,
u € C([r,00); L? (),

and u satisfies the energy equation,

S—[u()? + [Vu) > = (f(u(t)), u(t))
+(h(t),u(t)) in D'(T,00). (6)

Proof. The proof of this Theorem can be done by the method of monotony
(see [8])- 0

3 Preliminaries on the theory of pullback attractors

Now, we will recall the main points from the theory of pullback attractors which
will be needed to prove our objective (see [1] and [2] for more details).

Let us consider a process (also called a two-parameter semigroup) U on a
metric space X, i.e., a family {U(¢,7); —oco < 7 < t < +oo} of continuous
mappings U(t,7) : X — X, such that U(r,7)z = =, and

Ut,7)=U(t,r)U(r,7) forallT <r <t. (7)

Suppose that D is a nonempty class of parameterized sets D= {D(t); te R} C
P(X), where P(X) denotes the family of all nonempty subsets of X.

Definition 1 The process U(-,-) is said to be pullback D-asymptotically
compact if for anyt € R, any D € D, any sequence T, — —00, and any sequence
Ty, € D(73,), the sequence {U(t,T,)xy,} is relatively compact (i.e. pre-compact)
n X.

Definition 2 It is said that EAE D s pullback D-absorbing for the process
U(-,-) if for any t € R and any D € D, there ezists a To(t, D) <t such that

U(t,7)D(t) C B(t) for all 7 < 1o(t, D).

Definition 3 The family A = {A(t); t € R} C P(X) is said to be a pullback
D-attractor for U(-,-) if

1. A(t) is compact for all t € R,
2. A is pullback D-attracting, i.e.,
lim dist(U(¢,7)D(1), A(t)) = 0,

for all De D, and all t € R,
3. A s nvariant, i.e.,

U(t,7)A(T) = A(t), for —oo <7 <t < +00.
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We have the following result (see [2] for more details).

Theorem 2 Suppose that the process U(-,-) is pullback D-asymptotically
compact and that BeDisa family of pullback D-absorbing sets for U(-,-).

Then, the family A = {A(t); t e R} C P(X) defined by A(t) = A(B,t), te
R, where for each DeD

AD. )= | JUtrDE) |,

s<t \7<s

is a pullback D-attractor for U(-,-) which satisfies in addition that A(t) =
UEGDA(ZA),t), fort € R. Furthemore, A is minimal in the semse that
if C = {Ct); t € R} € P(X) is a family of closed sets such that
lim,_, o dist(U(t, 7)B(7),C(t)) =0, then A(t) C C(t).

4 Existence of the pullback attractor

Now, we can prove our main result in this paper. First, we need a continuity
result which is established in the next subsection.

4.1 Weak Continuity

Assume that the function f € C(R) satisfies (4) and (5), and that h €
L7, (R H (Q)).

Thanks to Theorem 1, we can define a process {U(t,7), 7 <t} in L?(Q),
as

Ut, 7)ur = u(t;7,ur) Yur € L*(Q), Vr < t. (8)

From the uniqueness of solution to problem (3), it follows that (8) defines a
process in L? (). In addition, it can be proved that the process defined by (8)
is continuous in L? (Q2).

Moreover, U is weakly continuous, and more exactly the following result
holds true. We will denote by “—” the weak convergence in the corresponding
indicated space, while “—” will denote the strong convergence, as usual.

Proposition 3 Let {u,,} C L?(Q) be a sequence converging weakly in L* (Q)
to an element u, € L*(Q). Then, for all T > 7, it follows

Ut,7)u,, —U(t,7)u, in L*(Q) Vt >, (9)
U, u,, —U(7)ur in L*(7,T; H} (Q)), (10)
U(,m)ur, =U(,T)ur in LP(7,T; L7 (Q)), (11)

fU ) ur,) = f(U ) ur) in LV (7, T5 LV (Q). (12)

If Q is a bounded set, then
U(yT)ur, — U (5, T)ur in L*(1,T; L* (Q)). (13)
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Proof. This result may be proved in much the same way as Theorem 1, and
using similar arguments to [11]. O

4.2 The existence of the global pullback attractor
Let Ry, be the set of all functions r : R — (0, +-00) such that

tli{n eMirl(t) =0,
and denote by Dy, the class of all families ﬁ:{D(t) :t € R} C P(L?(Q) ) such
that D(t) € B(0,rp(t)), for some r5 € Ry,, where B(0,75(f)) denotes the
closed ball in L? (Q) centered at zero with radius 5 (¢).
Now, we can prove the following result.

Theorem 4 Suppose that Q) satisfies (2), and suppose that f € C(R) satisfies
(4) and (5) with 1 =0. Let h € L} (R; H=1(Q)) be such that

loc

t
[ Iy ds < b Ve R

— 00

Then, there exists a unique global pullback Dy, -attractor for the process U, which
belongs to Dy, , and is defined by (8).

Proof. We only give the main ideas of the proof. Let 7 € R, and u, € L? (Q)
be fixed, and denote

U(t) = ’U/(t;T, U-,—) - U(t,T)UT YVt Z T.

Let D € Dy, be given. Taking into account (2), (4), the energy equality and
integrating between 7 and t,

t
U(t, T)u.)® < e**”/ M [ h(s) |71 s

— 00

(), (14)

for all ur € D(7) and for all t > 7.
Denote by Ry, (t) the nonnegative number given for each ¢ € R by

t
RE () =™ [ )|y ds 1. (15)

— 00

Observe that Ry, € Ry, . Now, consider the family By, of closed balls in L2 (),
By, = {By,(t) : t € R}, defined by By, (t) = {v e L2(Q) : [u| < Ry, ()} . It is
straightforward to check that EM € D,,, and moreover, by (14), the family EM
is pullback Dy, -absorbing for the process U.

According to Theorem 2, to finish the proof of the theorem we only have to
prove that U is pullback Dy,-asymptotically compact.
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Let us fix D € Dy,, a sequence 7, — —o00, a sequence u,, € D(7,), and
t € R. We have to prove that from the sequence {U(t, 7,)ur, } we can extract a
subsequence that converges in L2 (Q).

As the family B A, is pullback Dy, -absorbing, by a diagonal procedure, it is not
difficult to conclude that there exist a subsequence {(Tn/, uTn,)} C {(mn,ur,)},
and a sequence {wy;k >0} C L?(Q) such that for all k& > 0, and wy €
By, (t - kl):

Ut —k, 7 )ur, = wy in L?(Q), (16)
and
[wol < lim inf |U(t, 70 )ur,,| - (17)
If we now prove that also
lim sup |U(t, T )z, , | < |wol, (18)

n’—oo

then we will have
lim |U(t, 7 ur,,

n’—oo

= |U}Q| .

And this, together with the weak convergence, will imply the strong convergence
in L? () of U(t, 7w )ur,, to wo.

In order to prove (18), consider [u] := |Vu|* — A lul> = (f(u),u) . Taking into

account (2), (4), the energy equality and integrating between 7 and ¢, it is
immediate that for all £ > 0 and all 7, <t —k,

|U(t, TTL/)UT"/ ?
= U@t -k, r)ur, |

(19)
“Aik

e
t
n 2/ eri(s—1) (h(s),U(s,t —k)U(t — k, 7w )ur,, )ds
t—k
t
_ 2/ MU (s,t — k)U(t — b, s usr,, ] ds.
t—k
Now we will prove that
t
/ eri(s—t) [U(s,t — k)wy] ds (20)
t

—k

t
<liminf [ eMED [U(s,t — K)U(t— k7 )ur,, ] ds.

n'—oo Ji

Denote
Te(w) = I () + TP (v),

where

t
KO0 = [ A (9o = 3 o) ds,
t—
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and

D () =~ / M0 (f(v),0) ds,

—k
for all v € L?(t — k,t; H} () N LP(t — k, t; LP (Q)).
We also obtain from (16) and using Proposition 3

li@&f(J,gl)(U(-, t— KU (t — kT Jur )
> IV WUt - k). (21)
Using (5) with { = 0, from (16) and Proposition 3 we easily obtain
Jiminf (SO WUt = WU k7))
> JP Ut — k)wg).

Therefore (20) is easily obtained from the last inequality and (21).
Then, taking into account that the family Bj, is pullback Dy, -absorbing, from
(16), using Proposition 3 and thanks to (19) and (20), we obtain

lim sup |U(t, Tt )Ur, 2
2 —Aik 2
<R3, (E=k)e™ ™" + wol”,
for all k& > 1. Taking into account (15), we easily obtain

? < ).

lim sup |U(t, 7w )ur,,
n’—o0 "

O
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Abstract

We study the Laplace operator with Neumann boundary conditions in
a 2-dimensional thin domain with a higly oscillating boundary. We obtain
the correct limit problem for the case where the boundary is the graph of
the oscillating function eGe(z) where Ge(z) = a(z) + b(x)g(x/€) with g
periodic and a and b not necessarily constant.

Key words: thin domains, oscillations, homogenization
AMS subject classifications: 35B27, T4K10.

1 Introduction

We are interested in analyzing the behavior of the solutions, as the parameter
€ — 0, of the following linear elliptic problem

—Aw +w* = f° in R®
ow* . (1)
W =0 on OR

where the domain R, is a thin domain with a highly oscillating boundary,
f€ € L?(R°) and N¢ = (Nf, N§) is the unit outward normal to JRE.
We define the thin domain as

REZ{($17x2)€R2 |{E1 EI, 0<{E2<6G6({E1)} (2)

*Partially supported by: PHB2006-003 PC and PR2009-0027 from MICINN; MTM2006—
08262, MTM2009-07540 DGES, Spain and GR58/08, Grupo 920894 (BSCH-UCM, Spain)

fPartially supported by FAPESP 2006/06278-7, CAPES DGU 127/07 and CNPq
305210/2008-4.
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18 J.M. Arrieta, M.C. Pereira

where I = (0, 1), the function G¢(x) = a(z) + b(x)g(z/e) where g : R +— R is
an L-periodic positive function of class C' and the functions a,b : I — R are
piecewise C!-functions defined on I = (0, 1) satisfying

ap < a(z) < ay and fy < b(z) < fr. (3)
We also assume that there exist positive constants Gy and G such that

0<Go<Ge(x)<Gionl (4)

uniformly in € > 0.

Figure 1: The thin domain R¢

It is known that if the domain does not present oscillations, that is g = 0,
the 1-dimensional limiting problem is given by,

1 )
_@(a(x)vw)w +v=f, in(0,1) (5)

see for instance [6, 7, 8].

Moreover, if we consider g(x/e®) for some 0 < o < 1, instead of g(x/ ) and
if we assume that a(x) + b(z)g(x/e*) — h(z) w-L*(0,1) and W —
k(z) w-L?(0,1) (observe that h(z)k(z) > 1 a.e. and in general it is not true
that h(z)k(z) = 1), then the limit problem is

1

1 .
h(x) (%Uz)z'f'v—fv m (071) (6)

v,(0) =v,(1) =0

see [1].

In this note we are interested in addressing the case o = 1, that is
Ge(z) = a(x) + b(x)g(x/€), where none of the techniques used to solve the
previous two cases apply. Observe that this case is very resonant: the height of
the domain, the amplitude of the oscillations at the boundary and the period
of the oscillations are of the same order e.

As a matter of fact, we will show that the limit equation is
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where 8%
{1 - 8—y1(y1,y2)}dy1dy2, p(z) = Y|

q(z) = /Y

5
x

and the 2 dimensional domain Y;* depends on « € (0, 1) and is given by
Vi ={(yp2) €R? : 0<yn <L, 0<yz<alz)+bx)g(y)}  (8)

and X, is given by the solution of

~AX,=0in Y}
Z;{z =0 on Bg
s = N1 on BY (9)

X:(0,y2) = Xu(L,y2) on Bf
fY; ch dyldyz =0.

To obtain the limitting equation (7) we will divide the analysis in three cases:
(1) the purely periodic case, that is, a(-) and b(-) constants; (2) the piecewise
periodic case, that is, a(-) and b(-) are piecewise constant and (3) the general
case, where a and b are smooth functions.

2 Basic facts and notation

To study the convergence of (1) on the thin oscillating domain R, we consider
the change of variables (x,y) = (21, exe) which transform problem (1) into the
equivalent linear elliptic problem

2,€ 1 2, €
_8”2__28u2+u€:f5 inQE
5:61 € (%Cg (10)
O e p Lo e g on 90
8x1 ! 62 8{E2 2
on the domain Q¢ C R? given by
QEZ{(ﬂil,Z‘z) ERQ |$1 EI, 0< zo <G€(Z‘1)}. (11)

Observe that domain €2, is not thin any more, although the oscillations presented
at the upper boundary are very wild. Nevertheless, the }2 factor in front of the
diffusion in the x5 direction compensate the very wild oscillations at the top
boundary.

The variational formulation of (10) is find u¢ € H'(Q¢) such that

Ou” 9p 1 0w 9p _/ ‘ Qe
/QE {axl 02, 2 Ong Oy +u gp}dxldxg = /. feodridra Ve € H(QF). (12)
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In a natural way, we will need to consider the space H*(U) with the following
norm, that we denote by H!(U)

+lHa_w‘
€2l Oxy

2
L2(U)

ol ) = lolan + | 22
L) ) 8331 L2(U)

given by the inner product

(¢,<P)H3(U)Z/U{%a—@+ia—¢%+¢cp}dxldxg

3:51 8x1 62 8{E2 6:52

where U is an arbitrary open set of R2.

Remark that the solutions u¢ satisfy an uniform a priori estimate on e. In
fact, we can take ¢ = u€ in the expression (12) and after some easy calculations,
we obtain

uellmr ) < 1F<llz2 .- (13)

We also have the following extension operator,

Lemma 1 Let O and O€ be the domains given by

O={(x1,22) ER? |z €T and 0 < 29 < G4}
O° = {(v1,72) €R?* |21 €T and 0 < 22 < G(21)}

where I C R is an open interval, G. : I — R is a C'-function satisfying
0<Go<Ge(r1) <Gq forallz el and e > 0.
We have the following general extension operator

P. € L(LP(O%), LP(O)) N LW 2(0°), WP (0))

and a constant K independent of € and p such that

OP.p dp
Poollirion < K o]l oo, H— <KH—‘
[PellLro) < K @l ze(oc) O1a |l Lr(0) = 9 |l Lo (00
OP, 15} 15} (14)
0xy llLr(0) Oxq llLr(09) 0xo Il Lr(09)

for all o € WHP(O°) where 1 < p < 0o and n(e) = sup,{|G.(z)|}.

Proof. We extend the functions in the vertical direction by reflection across
the oscillating boundary, see [3] for details. O

3 The purely periodic case

With the aid of the multiple scale method, we can obtain our candidate to limit
problem. Once the limit problem is obtained, we may use the oscillatory test
function method of Tartar to show the convergence. The ideas to obtain this
problem follow very closely the arguments of [5, 4].
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We define the basic cell
Y*={(y,2) €ER* : 0<y< Land0<z<g(y)} (15)
and we call By the lateral boundary, By the upper boundary and By the lower

boundary of dY™*. So that, 9Y* = By U By U Bs.
In this cell we solve the problem,

Ay X(y,2) = in Y*
S—ﬁ(y,g( ) = Tyz)) on B,

g—%(y,O) =0 on By
X(0,z)=X(L,z) =z € By,
[y X dyrdyz =0

and consider
X
q= / ) {1 - aa—y(y,Z)}dydz, p=1[Y"|
Then, the limitting problem is,

_ d2w0
4 dx?

(z) + pwo(x) = pf(x), x€(0,1)
u((0) = ug(1) = 0.

(16)

4 The piecewise periodic case

We consider in this section the case where the functions a and b are locally
constant functions defined on I = (0,1). That is, we suppose there exists a set
of points

O=zxp<z <..<zy=1 (17)

such that the functions a and b are constants, say a; and b;, on each interval
Ii = (xi,l,xi) with 1 S ) S N.

Considering the weak formulation (12) of problem (10) and using the
extension operator from Lemma 1 in each of the intervals (z;,z;+1), we can
obtain that if we define the family of basic cells

Vi ={(y,y2) ER® : 0<y1 <L, 0<ys<a;+bigy)} (18)

and if we solve the family of problems in each of the basic cells fori =1,...,n,
—AX; =0in Y*
Z{Q =0 on B}
N+ = N1 on B} (19)

X (0 y2) = Xi(L,y2) on B}
fo Xi dyidy2 =0
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where B is the lateral boundary, B! is the upper boundary and B} is the lower
boundary of 9Y;* for all i =1, ..., N and define

0X; N
qi = ‘/Y: {1 — a—yl(yl,yg)}dyﬂym pi = |Yz |

then the variational formulation of the limit problem is

1 1
| a5 peap = [ srse. vocm0n) (0

where ¢(x) and p(x) are the piecewise constant function g(x) = ¢;, p(x) = p;
for x € (x;,wi41),1=1,...,N.
As a matter of fact, the following result can be proved,

Proposition 2 For each sequence ¢ — 0, there exists a subsequence, that we
also denote by €, and a function fo € L*(0,1) such that if ug € H(0,1) is the
weak solution of (20) then

Pu® —uy w— H'((z;,zi41) x (0,G1)), i=1,...,N

where P, is the extension operator given by Lemma 1 and where we assume that
uo has been extended constantly in the xo direction.

5 The general case

We consider in this section the case where a and b are smooth functions not
necessarily piecewise constant. We will obtain the limit equation and the
convergence of the solution of (10) to the solution of the limit problem by
approximating the functions a(-) and b(-) in L*°(0,1) by piecewise constant
functions as(-), bs(+), using the results from the previous section and passing to
the limit when § — 0. Observe that if ||a—as|| 0,1y — 0 and |[b—bs|| o (0,1) —
0 as d — 0, then ||Ge — G?|| — 0 as § — 0, uniformly in e. This new parameter
¢ introduces new difficulties in the problem since now we will need to consider
problem (10) with two parameters, ¢ and ¢ and the solution v = u§. In order
to be able to pass to the limit appropriately, we will prove a result on the
continuous dependence of the solutions of (10) with respect to the functions a
and b uniformly in e. This uniformity will allow us to interchange the limit and
obtain the correct limit problem.
More precisely, assume a, a, b and b are real functions uniformly bonded on

I satisfying (3) and consider the associated oscillating domains Q¢ and Qc given
by

QE:{(xl,x2)€R2 |:E1€I, 0 < xo <GE(CC1)},

QEZ{(CCLSEQ)ER2|CC1€I, 0<x2<ée(x1)}
with

Ge(x) = a(z) +b(x)g(x/e)  Ge(z) = a(z) + b(z)g(z/€)
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satisfying (4).
Let u° and @ be the solutions of the problem (10) in the oscillating domains
Q¢ and QF respectively with f¢ € L?(R?). Then we have the following result:

Proposition 3 There ezists a positive real function p : [0,00) — [0,00) such
that
= s ey + 18 B aengey + 18120 ey <20 (21)
with p(§) — 0 as 6 — 0 uniformly for all
o ¢>0;

o piecewise C' functions a,b, a, b with ||CAL—CAl||Loo(Q71) <4, ||b—i)||Lm(071) <4,
and ap < a’(x)ﬂd(x) < agq, ﬁo < b(x)ab(x) < ﬁla

o foe L*(R?), || fellL2m2y < 1.

Idea of the proof. We use that u¢ and 4 are the minima in H'(.) and H*(£2),
respectively of the functionals

1 dp? 1 9p?
Ve((p)zi/ {_gp +__<,0 —|—tp2}da:1da:2— A fCodaydrs

2
Pt oo (22
S op 1 oy A2 B €A
Ve(p) = 2/ {8951 + 2 02, + @ }dl’ldﬂiz o feodridas.
That is,
Vo(u®) = min  V(p), V(@) = min  V.(3).
()= _min, V() (i) = min V(%)

To be able to obtain an estimate like (21) we will need to be able to somehow
plug the function u. in the minimization problem for 4. and also plug 4. in
the minimization for u. and operate wisely to obtain the estimates. Since the
domains Q. and €, are different and they do not necessarily have any inclusion
relation, we will need to “extend” the function u. to Q. and viceversa, “extend"
the function . to .. But if we use the extension operator defined in Lemma
1 then the constants involved will depend on the derivative of the functions a,b
and &,5. But this is a serious drawback since the functions a,b a,b are not
smooth enough and they do not need to be close in the C' topology. Therefore,
we cannot use the extension operator from Lemma 1.

Instead of this extension operator we define an operator which consists in
“stretching" a function defined in €2, only in the zo-direction by a factor (1 +1n)
and restrict the “stretched” function to the domain .. That is, in general, let
us define the operator

P, HY(U) — HY(U(1 + 1))

(Prinp)(z1,22) = ¢ (xl, ) (z1,22) €U (23)

€2
1+n
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where
Ul +n) ={(z1, (1 +n)z2) € R?*| (21, 22) € U}

and U C R? is an arbitrary open set.
With this operator, we can show that if u€ is a solution of problem (10) then

||u€||§{€1(ge\ge( Lyt ||P1+,,u€||%161(96(1+n)\95) + [Juf - P1+nu€||%lel(§ze) <CVn

1+n
where C'= C(G1, || f€||2) independent of € € (0,1).
This last estimate allows us to consider the function P1+,,u6|§2€ as a test
function in the problem in fle and Piy,tc|o, as a test function in the problem

in Q. The fact that |ja — al|peo(o,1), [[b — b
small uniformly in e.

|L<(0,1) < 0 permits us to take 7

With Proposition 3 and using that estimate (21) is uniformly in €, will allow
us to show that the limit problem in the general case is given by (7).

References

[1] J.M. Arrieta; Spectral properties of Schrédinger operators under perturba-
tions of the domain. Ph.D. Thesis, Georgia Inst of Tech, (1991).

[2] J.M. Arrieta, M.C. Pereira; Thin domains with highly oscillating
boundaries, In preparation.

[3] J. M. Arrieta, A. N. Carvalho, M. C. Pereira and R. P. da Silva; The
Neumann problem on thin domain with boundary oscillating, preprint.

[4] A. Bensoussan, J. L. Lions and G. Papanicolaou; Asymptotic Analysis for
Periodic Structures, North-Holland Publishing Company (1978).

[5] D. Cioranescu and J. Saint J. Paulin;  Homogenization of Reticulated
Structures, Springer Verlag (1980).

[6] J. K. Hale and G. Raugel; Reaction-diffusion equation on thin domains, J.
Math. Pures and Appl. (9) 71, no. 1, 33-95 (1992).

[7] G. Raugel; Dynamics of partial differential equations on thin domains in
Dynamical systems (Montecatini Terme, 1994), 208-315, Lecture Notes in
Math., 1609, Springer, Berlin, 1995.

[8] R. P. da Silva, Semicontinuidade inferior de atratores para problemas
parabolicos em dominios finos, Tese apresentada ao Instituto de Ciéncias
Mateméticas e de Computacao - ICMC - USP, Setembro de 2007.

[9] L. Tartar; Problémmes d’homogénéisation dans les équations auz dérivées
partielles, Cours Peccot, Collége de France (1977).



Bol. Soc. Esp. Mat. Apl.
n°51(2010), 25-33

MORE ON FINITE-TIME HYPERBOLICITY
ARNO BERGER

Mathematical Sciences, University of Alberta
Edmonton, Alberta, Canada

aberger@math.ualberta.ca

Abstract

A solution of a nonautonomous ordinary differential equation is finite-
time hyperbolic, i.e. hyperbolic on a compact interval of time, if the
linearisation along that solution exhibits a strong exponential dichotomy.
In analogy to classical asymptotic facts, it is shown that finite-time
hyperbolicity is robust, that is, it persists under small perturbations.
Eigenvalues and -vectors may be misleading with regards to hyperbolicity.
This is demonstrated by means of simple examples.
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Hyperbolicity is widely recognised as a fundamental notion of dynamical systems
theory. While extensions and refinements of the classical, that is, asymptotic
concept, continue to play a vital role in modern dynamics, much attention has
recently been drawn to the systematic study of suitable finite-time analogues.
This note contributes to finite-time dynamics a brief discussion of two practical
aspects of the hyperbolicity concept developed and utilised e.g. in [1, 3, 4, 6, §].

1 Hyperbolicity is robust

Consider the nonautonomous ordinary differential equation
= f(t,x), (1)

where f : I x U — R%is C*, I = [t_,ty] with —00 < t_ < t; < 400, and
U c R is a non-empty open set. The linearisation of (1) along any solution
pw:l—Uis

§ = Do f(t, u(t))y. (2)
To quantify growth and decay of solutions of (2), arbitrary inner product norms
|- llr = \/(-,T-) are considered, where I' € R4*?¢ is any symmetric positive
definite matrix, i.e. I'T =T > 0, and (-, -) is the standard inner product on R%,

25
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the symbol || - ||r also denotes the induced norm on R4*¢. Quantities depending
on I' have their dependence made explicit by a subscript which is suppressed
only if I equals idgx 4, the d x d identity matrix.

To define finite-time hyperbolicity, instead of (2) consider more generally
any nonautonomous linear equation

y=At)y, (3)

where A : I — R%*9 is continuous. Let ® : I x I — R?*? denote the associated
evolution operator, i.e., y : t — ®(t,s)n is, for any n € R?, the unique solution
of (3) satisfying y(s) = 1. A projection-valued function P : I — R%*? is an
invariant projector for (3) if P(¢t)®(t,s) = ®(¢,s)P(s) for all t,s € I. Note that
t — P(t) is continuous, and rkP(t) is constant, for any invariant projector.

Definition 1 Let T'T =T > 0. Equation (3) is hyperbolic (on I w.r.t. ||-||r) if
there exists an invariant projector P for (3), together with constants «, 3 > 0,
such that for every y € RY,

||<I>(75,5)P(s)y||F < e_o‘(t_s)HP(s)yHF , Vt>s, (4)
||<I>(t, s) (idaxa — P(s))y“F < eﬁ(t_S)H (idaxa — P(s))y“F , Vi<s. (5)

A solution p of (1) is hyperbolic if the associated linearisation (2) is hyperbolic.

The estimates in Definition 1 incorporate a finite-time variant of the classical
notion of an exponential dichotomy that is more restrictive than the latter
because an arbitrary multiplicative constant on the right-hand side of (4) or
(5) would render the concept meaningless. Consequently, to establish the
robustness of finite-time hyperbolicity, classical arguments using Gronwall-type
estimates (see e.g. [10]) do not apply directly. Instead, the alternative argument
presented in Lemma 2 below makes use of [3, Lem.9], restated here as

Proposition 1 Equation (3) is hyperbolic on I w.r.t. || - ||r, with invariant
projector P and constants o, f > 0, if and only if, for all t € I and y € R?,

%II@(t,L)P(L)yIIF < —af|®(t, i) P(t-)yllr, (6)
as well as
(0t (aea — PGyl > B8 1) (dea — PGyl ()

Lemma 2 Let A,ﬁ : I — R be continuous, and assume (3) is hyperbolic,

with constants o, B > 0. Then, given 0 < a < «, 0 < 8 < (3, there exists § > 0
such that

y=A(t)y (8)

is hyperbolic as well, with constants &, 3, whenever maxe; || A(t) — A(t)||r < 6.
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Proof. For every continuous B : [ — R4 let ||B|loo := maxic || B(t)|r,
and denote by ® and ® the evolution operators associated with (3) and (8),
respectively. Also, recall the trivial estimate

e 1A=yl < | (t, s)yle < el A=y |p, vis e, (9)

and note that P : ¢ — ®(t,t_)P(t_)®(t,t_)~! is an invariant projector for (8).
For the latter equation, the variation of constants formula yields

(t,t_) — D(t,t_) :/ O(t,7)(A() — A(7))B(r,t_) dr,

which together with (9) implies that, for all ¢ € I,

t ~
H<I>(t,t_) — (I)(t,t_)HF < / e(t—T)llAlloo”A _ AHOOe(T—t_)HAHOQdT
t

t —
< e<t—t—>”A“oo||Z1—A||oo/ Tt A- Al g

t_
< e(t=t)ll Al (e<t—t_>||K—A||oo _ 1)

<2(t =t )el! M~ LA - Al

provided that ||f§_ Allso < 01 := (ty —t_)"'. Given y € R? define the two
C'-functions ¢,¢ : I — R as

¢t SR ) PEylE . 6t SIB(E )Pt )yl
For notational convenience, let n = P(t_)y. It follows from the estimate
|6 — ¢| = (T Ady, D) — (T ADn, Bn)|
< [(T(A = A)gn, én)| + [(TADn, &) — (AP, Diy)|
< 2[4 = Allocd + [[Allo[[ (@ = @)n[ e ([ @nl[r + [|Pn]r)
< 2| A = Allocd + [ Alloo (b4 — t-)el+ 1= | 4 — Al o Inlle(1/ 86 +/86)
< 20/ A - Aloo (8 + 20 Allso(ty — t-)elts A=A (G 4 )

which is valid whenever ||A — Ao < 01, that

|6(t) — d(t)] < CIIA — Al (8(t) + 6(t)), VEeT,

where C' depends only on t; —t_ + ||Al|s. With Proposition 1, therefore,

G <o+ CA—Al(d+6) < —206+C|/A - Allne(3+ 0)
< —2(a—ClA - Allo)g + (2a + C| A - Allo)|é - ¢], (10)
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whenever ||A — A||o < 61. Under the latter condition, observe that also

|6 — | < 3116 — O)nllrlnlc + I énlir)
< (b = )M T Al (/25 + /20)
<oty — t_ et Al 4 Al (euwti)nﬁnoogjL e(t+*t—)|\AHoo¢)

<2ty — t7)61+2(t+*t—)llAlloo||g_ A||oo($+ )
< 20| A~ Al ¢ + Cl|A — Allo|d — ¢],

which in turn implies that
|6(t) = $(1)] < 4C|IA - Allwd(t), VEET, (11)
provided that [|A — Ao < &2 := (20)~! < §;. Combining (10) and (11) yields
o(t) < —2(a — 20(1 +20)| A — All)(t), VeI,

min(l, ¢ — @)
. 2C(1 + 2a)

implies that ¢(t) < —2ag(t) for all t € I. This establishes (6). A completely
analogous argument proves (7). Overall, |A — Alloc < 6 ensures that (8) is

whenever | A— Ao < 8. With § := > 0 therefore [|A— Al < 6

hyperbolic on I w.r.t. || - ||, with invariant projector P and constants o, 3. O

Remark 1 (i) Note that § in Lemma 2 depends only on o« — @,  — B, and
ty —t_ +||Al|oo- Usually, it is not possible to choose & = « or B = (3, not even
if (3) and (8) are autonomous.

(ii) It was shown in [3, Exp.24] that, perhaps somewhat surprisingly,

. 101
is hyperbolic for every I and I'. Thus, by Lemma 2,

y-:[g; uy (12)

is hyperbolic as well, provided that max;c Z?:l |a;(t)| is sufficiently small for
the continuous functions a1, a2,a3 : I — R. If so, even though the (possibly
time-dependent) eigenvalues of (12) may be both positive or negative, the rank
of any invariant projector according to Definition 1 equals one.

The desired robustness result is an immediate consequence of Lemma 2. It
asserts that hyperbolicity according to Definition 1 is robust under variations
of the initial data and C'-small perturbations of the right-hand side in (1).
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Theorem 3 Assume the solution p of (1) is hyperbolic on I w.r.t. ||-||r. Then
there exists § > 0 such that for every C'-function f : I x U — R? with

supies (|7 10) = £ 11 O) |+ DT (01(0) = Dot 100)]) < 5. (13

every solution i : I — U of

&= f(t ) (14)
is hyperbolic as well, provided that ||fi(to) — u(to)||lr < 0 for some to € I.

Proof. Given € > 0, choose §; > 0 so small that

Ts, o= {(t,x) it I, o — p(t)|r <61} C I x U

and || D, f(t, ) — Dy f(t,y)||r < 3& whenever z,y € Ty, and ||z —y||r < 61. Also,
pick d2 > 0 small enough to ensure that maxcrs ||f(t,u(t)) — f(t, p®)|Ir < b2
and [|zg — p(to)|| < 62 for some ¢y € I imply that the solution of (14) with
x(to) = wo exists for all t € I and satisfies maxses ||x(t) — p(t)||r < d1. With
6 :=min(4e, 61, 02), it follows from (13) that

| Do f (£, 7i(t)) = Do f (£ (1)) -
< D (0 50)) — DeF (b)) + DT (0 (1) ~ D (8.0
< %8 +d<e,

if only ||f(to) — p(to)||r < ¢ for some ¢y € I. Since € > 0 was arbitrary, Lemma
2 applies with A(t) = D, f (¢, u(t)) and A(t) = Do f (¢, fu(t)). O

2 How (not) to detect hyperbolicity

If the system (3) is autonomous, then it has a (classical) exponential dichotomy if
and only if no eigenvalue of A lies on the imaginary axis. It thus seems natural to
use eigenvalues as a tool to detect hyperbolicity: If the eigenvalues and -vectors
vary sufficiently little over time then, hopefully, some insight concerning finite-
time behaviour can be gained from them. In this spirit and for d = 2 and
I' = idaxa, [6, Thm.1] and [9, Thm.1] present conditions on the spectral data of
A that ensure finite-time hyperbolicity.

Relying on spectral data in a finite-time context does have its pitfalls,
though. This fact, already hinted at by Remark 1(ii), is elucidated further
through the following simple example which is phrased in the terminology of
[7] so as to make it directly accessible to readers of that paper. Specifically, a
family £ = {£; : t € I} of C'-curves £; : R — RY is referred to as a material
line of (1) if it is invariant in the sense that, for any s,t € I,

zo € Lo(R) if and only if z(t;s,20) € L:(R);

here x(+; s, 20) denotes the unique solution of (1) with z(s) = 9. The obvious
fluid dynamical interpretation is that, at each time ¢, the set £;(R) represents a
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smooth curve of fluid particles advected by the velocity field f. A material line £
is attracting if for every solution p of (1) with u(t) € L:(R) for some (and hence
every) t € I, there exists & > 0 and a smooth family X of (d — 1)-dimensional
subspaces, invariant under the linearisation (2) along p, i.e. ®(¢, )X (s) = X (t)
for all s,t € I, such that X(t) is, for every t € I, transversal to T}, L:(R), and

@t s)z]| < e jz]|, VE=s,0€ X(s). (15)

For any x > 0, consider now the autonomous linear equation

-1 6 0
T = 0 -7 0 |=x. (16)
0 0 ~r

Since the (x1,x2)-plane and the x3-axis are both invariant under the flow
generated by (16), corresponding respectively to two negative and one positive
eigenvalue, it seems plausible that e.g. the x3-axis is an attracting material line.
In fact, Case 1 of |7, Thm.1], asserts that every solution of (16) is contained in
an attracting material line, and hence (16) allows for many attracting material
lines. Plausible though this may be, it is actually not true:

Claim 4 No material line of (16) is attracting.

To verify this claim, suppose £ was an attracting material line of (16) and u
a solution in £. Denote by Gs 3 the set of all two-dimensional subspaces of
R3. Tt follows from (15) that &3 ®(t, s)x||2|t:S < —alz||? for all z € X(s),
where X (s) € Ga,3 is transversal to T),(5) Ls(R). Note that &1 ®(t, s)x||2|t:S =
(Cx, z) with the symmetric matrix

-1 3 0
C= 3 =7 0
0 0 k

Thus Claim 4 will follow immediately once it is demonstrated that
maxzexjngﬁ”:l(Cx,@ >0, VX eGygs. (17)
To prove (17), first recall the following elementary fact from linear algebra.

Proposition 5 Let X # {0} be a subspace of R?, and C, D € R symmetric
matrices with D > 0. Then {(Cz,z) : = € X,(Dz,z) = 1} = [p_,p4],
where py and p— denote, respectively, the largest and smallest eigenvalue of
[(Cb;, b;)][(Db;, b;)] "1 € R™™! and {by,...,b} is any basis of X.

Denote by Xy, C R? the two-dimensional space

cos ¥ cos
Xy, = | cos¥sing , OSﬁS%TI‘,OS(pSQTI‘;
sin ¢



More on finite-time hyperbolicity 31

every X € G233 equals Xy, for the appropriate ¥, ¢. To apply Proposition
5 with D = id3x3 and X = Xy ,, deduce from a straightforward computation
that [(Cb;, b;)][(Db;, b;)] 7! is similar to kidaxo + E1Es, where

: -1 3 1 —cos?dcos?p —cos? v cospsinp
El__lﬁdzw_'—{ 3 —7}’ E2_{—cos2ﬁcosgpsin<p 1 — cos? ¥sin’

It follows that the maximum of {(Cz,z) : # € Xy ., ||z| =1} is k + 7, with 7
denoting the largest zero of the quadratic function

Pt 2+ (2(/<a—|—4) —cos? 19(/$+4—3\/§sin(2g0+%7r)))t+(/<a2+8f$—2) sin® ¥ .
If 0 < k < 3v2 — 4 then P9,,(0) <0 and hence 7 > 0. On the other hand,

Do, (3V2 — 4 — k) = 3V2(3V2 — 4 — k) cos® ¥ (1 +sin(2p + 17)) <0
whenever k > 3v/2 — 4, s0 that Kk + 17 > 3v/2 — 4 in this case. Overall therefore
maxge x, |z|=1(C, ) > min(k, 3V2—-4)>0, VXe Gas.

Clearly, this strengthened form of (17) proves Claim 4.

Remark 2 (i) A straightforward computation confirms that (16) is hyperbolic
w.r.t. || - || if and only if £ —t_ < % log M ~ 0.1232. In this case, the rank
of any invariant projector for (16) according to Definition 1 equals one, and not
two as might be expected.

(ii) If A is constant and has no eigenvalue on the imaginary axis, then there
always exist uncountably many I' = I'" > 0 such that (3) is hyperbolic w.r.t.
|- |r on every compact interval I, see |1, Rem.2| and |2, Thm.2.9|. For example,

(16) is hyperbolic on every I w.r.t. || - ||, where
1 10
'=11 2 0
0 0 1
Moreover, if the definition of attractivity is adapted in that || - || in (15) is
replaced by || - ||lr, then every trajectory of (16) is indeed contained in an

attracting material line. Not restricting oneself to the Euclidean norm may
thus be beneficial even in the most elementary of circumstances.

(ii) The reader may wonder exactly which part of the alleged proof of [7,
Thm.1] is problematic. The answer is simple: As the above example shows,
linear changes of coordinates do generally not preserve finite-time hyperbolicity,
not even if they are time-independent. Concretely, x = My with the appropriate
non-singular matrix M transforms (16) into y = diag[—1, —7, ], for which e.g.
every trajectory not contained in the (y1,y2)-plane, and hence in particular the
ys-axis is an attracting material line.

(iv) The usage of time-dependent spectral data to detect finite-time
hyperbolicity can be avoided altogether. Based on a dynamic partition of
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the extended phase space, [1, Cor.9] presents a neat condition guaranteeing
that a solution p of (1) is hyperbolic. The dynamic partition does not involve
eigenvalues or -vectors but rather utilises a classification of the points in [ x U
according to their qualitative instantaneous behaviour. The interested reader
may want to consult [1, 2, 5, 6, 8] where aspects of this useful concept are
developed in detail.
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Abstract

The aim of this paper is to present some recent results concerning
non—autonomous discrete systems (non-autonomous order one difference
equations) and state some problems that arise in this field.
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1 Introduction

Let X be a compact metric space and consider a sequence of continuous maps
fn: X = X, n €N, denoted by fi 0 = (fn)oz,- This sequence defines
a non—autonomous discrete system (X, f1,). The orbit of any =z € X is
given by the sequence (fi'(z)) = Orb(z, f1 ), where f]' = f, o..0 f; for
n > 1, and f{ is the identity map. If f, = f for any n € N, then the pair
(X, f) is an autonomous discrete dynamical system. We point out that all
definitions that we will introduce in this paper for the non—-autonomous case
have an autonomous well-known equivalent definition in the setting of discrete
dynamical systems.

Non-autonomous discrete systems where introduced in [20], although they
also have appeared connected to some non—autonomous difference equations
(see [14] or [15]). Note that the orbit of x € X is given by the solution of the
non—autonomous difference equation

{ In41 = fn(xn)a

I = X.

It is obvious that, if we do not add any condition on the sequence fi -, in
general we cannot characterize the behavior of the orbits of the system. So, we
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are going to present some particular cases of non—autonomous discrete systems
for which something can be said on this behavior.

The set of limit points of an orbit Orb(z, f1 ) is the w-limit set of =, which
is denoted by w(z, f1,00). A point € X is said to be recurrent if x € w(z, fi,00)-
We denote by A(f1,00) = Uzexw(x, fi,00). Finally, z € X is a non—wandering
point if for any open neighborhood U of z, there is a positive integer n such
that fi"(U)NU # 0. Note that

R(f1,00) € w(fl,m) - Q(fl,oo)a

where R(f1 ) and Q(f1,00) denote the sets of recurrent and non-wandering
points, respectively.

The paper is organized as follows. In the next section we analyze some
results concerning periodic sequences of maps. Later on, we study dynamic
properties of sequences which converge uniformly to continuous maps. Finally,
in the last section we show some results concerning the dynamical complexity
of the last class of sequences of maps.

2 Periodic sequences

Let us assume the existence of a minimal positive integer k such that f,,+r = fn
for all n > 1, and therefore, the sequence f; o is periodic. The interest for such
sequences comes from biological and economical sciences. Let us emphasize
that some scientists working on population dynamics use such kind of systems
to model the population growth of species under some periodic changes in the
environment (see e.g. [9] and [15]). On the other hand, periodic sequences
of period £ = 2 are deeply connected to duopoly models. A duopoly is a
market in which two firms produce the same or equivalent goods. Hence, the
future production are given by the so—called reaction functions f;, ¢ = 1,2. In
some cases, such reaction functions have an one dimensional domain and the
productions are given by the systems (f1, fa, f1, fo,...) and (fe, f1, f2, f1,..),
respectively (see e.g. [21], [22] and [24]).
It is just simple to prove that for any x € X,

w(T, fleo) = w(@, fro...ofi)Uw(fi(x),fiofro..of2)
U...u UJ( f_l(ﬁli), fk—l O0...0 fl o fk)7
and hence one can wonder whether the behavior of f; o can be deduced from

the behavior of the compositions fro...o f1, fiofro...ofa, ... and fr_10...f10 fk.
This idea produces others positive results. For instance, in [20] it is proved that

h(fLoo) = %h(fk O...0 fl) = ... = %h(fk,1 O...0 fl o fk)7

where h(f1,00) is the topological entropy of fi o, which is a measure of the
dynamical complexity of a system. Additionally, in [10], the characterization
of metric attractors (roughly speaking sets which are w-limit sets of almost all
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x € [0,1]) of periodic of order two where the maps have negative Schwarzian
derivative! have been investigated. The same authors investigate in [11] the
Pitchfork bifurcation in these kind of systems. Finally, in [1] a characterization
of periodic solutions of one dimensional non—autonomous difference equations
has been found in terms of the Sharkovsky’s result for one dimensional maps
(see e.g. [26] and for a simple proof see [12]).

However, we must point out that the above compositions may need not have
the same dynamic properties (see e.g. [4] or [8]). Additionally, some dynamic
properties of a sequence f; o cannot be obtained from the above compositions;
for instance, the existence of periodic orbits of odd period of a non—autonomous
system fi1.o = (f1, f2, f1, f2,...) defined on the unit interval [0, 1] cannot be
deduced from the periodic orbits of f1 o fo and fa o fi (see [7]).

Even when the compositions of maps fi,..., fx can describe a dynamical
property of fi ., sometimes it is not good in practice. For instance, it is well-
known that the logistic family f,(z) = pxz(l —z), € [0,1] and p € [1,4], has a
fixed point which is an attractor for all orbits in (0, 1) in the case that 1 < u < 3.
It is an open question (see [14]) to check the conditions of the parameters p;,
i =1,..., k, such that the periodic sequence (f,,, ..., fu.,...) has a periodic orbit
of period k which also is an attractor for all trajectories in (0,1). Of course,
this periodic orbit (z1,z2, ..., Zk, ...) has to satisfy

|fiy (1) fry (2) . fly ()| < 1,

but the family of parameters which makes possible the above equality is very
difficult to characterize in practice.

A similar problem can be found in [23], where an economic model is
presented. This model is given by a periodic sequence (fi, ..., fi,...) and all
maps have the same fixed point, which is usually called the Cournot equilibrium.
The local stability of this point is very important in the microeconomic theory.
The local equilibrium xg € R™ will be stable provided the Jacobian matrix

J(fr oo fi)(x0) = I(fr)(x0) - I(fr—1)(X0) - - - I(f1)(X0)

has spectral radius smaller than one. But in practice this is impossible to verify
from J(f;)(x0), ¢ =1, ..., k, because these matrices have spectral radius at least
one. So, checking the stability of the Cournot equilibrium is a difficult technical
problem.

3 Convergent sequences

Now, assume that the sequence fi o converges uniformly to a continuous map
f- In general, it is not true that an w-limit set w(x, f1,~) is also an w-limit set
of f; for example, from [16] can be constructed a sequence fi o, which converges
to the identity on [0, 1], and such that there are x € [0, 1] with the property
that w(z, f1,00) = [0, 1], while any w-limit set of the limit map is a single point.

! The Schwarzian derivative of a good enough map f is Sf(z) =

@) 3 (f”(fc) ) ’

[y 2\ (@)
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However, we can introduce some results which characterize these w-limit sets.
The next one can be seen in [19].

Theorem 1 Let f, : X — X be continuous such that f, converges uniformly
to f. Then:

(a) For any x € X, the set w(z, f1,00) is compact and strongly invariant by f

[F(@(@; f1,00)) = W(, f1,00))]-

(b) Let X = [0,1] and assume that every periodic orbit of f is a fized point.
Then for any x € I, w(x, f1.00) = [a,b] CF(f), 0 <a <b<1,, where
F(f) denotes the set of fized points of f.

If we consider additional properties for the limit map f, we can improve
the last result. Let § > 0. A sequence z, is a d—pseudo orbit of f if
d(@py1, f(zn)) < 6 for n > 1. Given € > 0, we say that Orb(z, f) e—shadows
Xy if d(xn, f"(x)) < € for n > 1. The map f has the shadowing property if
for any € > 0 there is > 0 such that any d—pseudo orbit is e—shadowed by an
orbit of f (see [2] or [17]). The map f has the limit shadowing property (see
[13]) if limy o0 d(n+1, f(2n)) = 0, which implies that there is € X such that
lim,, o d(zy, f™(x)) = 0. With this notation, the following results from [5] can
be understood.

Theorem 2 Assume fioo = (fn), fn + X — X continuous for all n,
converges uniformly to f which has the shadowing property. Then any limit
point of any trajectory of fi.o is in Qf). In addition, if f has the limit
shadowing property, then for any x € X, there is z € X such that w(z, f1,00) =
w(z, f).

In the interval case, we can state a stronger result.

Theorem 3 Assume fi. = (fn) is a sequence on continuous interval maps
converging uniformly to f, which has the shadowing property. Then for any
x € [0,1] there is z € [0,1] such that w(z, f1,) = w(z, f).

It is unclear whether Theorem 3 holds when the phase space is not the
compact interval. We conjecture that it remains true for continuous tree and
graph maps, but it is false in general for maps defined on two—dimensional
spaces. Finally, it is also interesting to investigate what conditions are necessary
to get recurrence, that is, when is non—empty R(f1 o0)?

4 Chaos and related notions

In the seminal paper [20] the following result concerning the topological entropy
h(f1,00) can be found.

Theorem 4 Let f, : X — X be continuous such that f, converges uniformly
to f. Then:

h(f1.00) < ().
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Since the topological entropy of a map is a measure of the dynamical
complexity of such map (see e.g. [3]), the above result suggests the general
idea that if f is simple then f;  is also simple, and the complexity of fi o will
imply the complexity of f. As we will see, this idea is false for Li—Yorke chaos.

One of the most well-known definition of chaos in discrete dynamical systems
is due to Li and Yorke (see [25]). A non-autonomous discrete system fi oo is
said to be chaotic in the sense of Li—Yorke if there is an uncountable subset
S C I such that for any x,y € S, x # y, it is held that

lim inf | 7'(2) ~ f7'()] =0

and
limsup |f{"(z) — f{"(y)| > 0.

n—oo
The set S is called a scrambled set of fi .. Note that when f, = f, this
definition agrees with the classical definition of Li—Yorke in the case of discrete
dynamical systems.

Let us start with the negative results. It can be deduced from [16] the
existence of a sequence fi ., chaotic in the sense of Li and Yorke, which
converges uniformly to the identity. That is, the limit map is simple while
the non—autonomous system fi o is complicated.

Continuous interval maps which are not chaotic in the sense of Li—Yorke are
in fact dynamically simple. Recall that x € I is periodic if there is £ € N such
that f*(z) = 2. We say that an orbit Orb(z, f) is approximated by periodic
orbits if for any € > 0 there are ng € N and a periodic point xg such that
[f™(x) — f™(x0)| < € for all n > ny. Then it is proved in [18] and |27] that an
interval map is either Li—Yorke chaotic or any orbit is approximated by periodic
orbits. We can refer the complexity of fi . to the complexity of f as follows
(see [6]).

Theorem 5 Let fi o be a sequence of surjective continuous interval maps
converging to a map f.

(a) If the map f has positive topological entropy, then fi o is Li-Yorke
chaotic.

(b) If the map f has the shadowing property, then fi o is Li—Yorke chaotic if
and only if f is Li—Yorke chaotic.

Note that Li and Yorke chaotic maps with zero topological entropy have not
the shadowing property (see [17]). So, does such kind of maps satisfy Theorem
57 More precisely, if f . converges to a chaotic map f with zero topological
entropy, is f1,.c also chaotic in the Li—Yorke sense?

With the shadowing property hypothesis, we can state the following, which
is a dichotomy between simplicity and complexity for this kind of sequences.
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Theorem 6 Assume that the sequence of surjective continuous interval maps
f1,00 converges uniformly to a map f which has the shadowing property. Then
f1,00 is either Li-Yorke chaotic or for any x € [0,1] and € > 0 there is a periodic
point y of f, and ng € N such that |f1*(x) — f{'(y)] < € for any n > ng.

Surjectivity condition in Theorems 5 and 6 is an easy way to avoid
the existence of the next critical example. Consider the sequence f . =
(9, f,f, f,...) where g(z) = 0 and f(x) = 42(1 — z) for x € [0,1]. Then fi
converges uniformly to f, which is a chaotic map, but all the orbits of f; o are
eventually constant to 0. It is an open question to find another non—drastic
conditions that guarantee the validity of such results.

The number of non-equivalent definitions of chaos and simplicity for discrete
dynamical systems is huge (see for example several of them in [3]). So, it is a
natural question to wonder when similar results to Theorems 5 and 6 are true
for these chaos definitions. Additionally, it is also natural to wonder about these
question when the sequence f; o, does not converge uniformly to any continuous
limit map f.
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Abstract

Stochastic partial differential equations (SPDE) with additive noise
of the reaction-diffusion type are formulated on time-varying domains,
where the domains are obtained by a regular temporally dependent
spatially diffeomorphic transformation of a reference domain, which is
bounded and has a smooth boundary. The main issue considered here
is the interpretation of the notions of noise and solution on time-varying
domains.

Key words: Stochastic partial differential equations, time-varying domains,
additive noise
AMS subject classifications: 35K20, 35R60, 60H15

1 Introduction

Deterministic partial differential equations on cylindrical or time-varying
domains have attracted considerable attention, with the focus mainly on
existence and regularity issues, see [1, 7, 8, 12]. Ounly very recently have other
issues such as controllability and the existence of attractors been investigated,
see [4, 5, 6].

The theory of stochastic partial differential equations is now well established
[2, 11], but to our knowledge, always uses a fixed spatial domain. Here we
consider a class of such equations, with additive noise, on time-varying domains
which are obtained by a regular temporally dependent spatially diffeomorphic
transformation of a reference domain, which is bounded and has a smooth
boundary. This requires an appropriate interpretation of the notions of noise
and solution, which are given here.

Partially supported by the ARC-DAAD and by the Ministerio de Ciencia e Innovacion
(Spain) grant MTM2008-00088 and Junta de Andalucia grant PO7-FQM-02468.
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2 Parabolic PDE on time-varying domains

Let O be a nonempty bounded open subset of RY with C? boundary 90, and
r =r(y,t) a vector function

r € CHO x [0,00); RY), (1)
such that

r(t) : O — Oy :=r(0,t) is a C?-diffeomorphism for all ¢ € [0,00).  (2)

We define
Q= J orx{t
te(0,+00)
Y= U 80t X {t}
te(0,4+00)

The set @ is an open subset of RV*! with boundary
0Q =X U (Og x {0}).

We will also assume that the function 7 = 7(z,t), where 7(-,t) = r=1(-,t)
denotes the inverse of r(-,t), satisfies

re C*H(Q:RY), (3)

OOy O

v 675’ 8:@ axlﬁxj
We consider the following initial boundary value problem for a

nonlinear parabolic partial differential equation of reaction-diffusion type with
homogeneous Dirichlet boundary condition,

belong to C(Q;RY), for all 1 <1i,j < N.

i.e

ou .
E—Au+f(u)—0 in Q,
u=0 on 3, (4)

u(z,0) = uo(x), =z € Oy,

where ug : Qg — R and f € C'(R) are given. We will assume that f satisfies
that there exist nonnegative constants oy, as, § and [, and p > 2, such that

B4 aqls|” < f(s)s < B+ azls|]P VseR (5)

and
f'(s)= -1 VseR. (6)
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Following [6], we set
v(y,t) = u(r(y,t),t) forye O,t>0,
or, equivalently,
u(z,t) = v(rF(x,t),t) for x € Ot >0.

Then, the PDE (4) can be transformed to (see also [5])

ity = 5 2 (st 2 (0. 1)) 4 b 1) - Tyo(y, ) + F0ly. 1)) = 0
675 Y, o 16 aik\Y, ayk Y, Y, yU\Y, v\Y, -
in O x (0,00),

v=0 on 90 x (0,00),
’U(y,O) = U’O(T(yao))v ye Ov

(7)
where - denotes the inner product of RV,
N - _
87’k 8Tj .
i t) = — t),t t),t k=1,---, N,
a]k(?/, ) — axl (T(yv )a )8$1 (T(yv )a )7 Js ’ ) ’
and b(y,t) = (b1(y,t), -+ ,bn(y,t)) € RY is defined by
be(yst) = OTE (1, 1), 8) — A (r i“ﬂ’“ ), k=1,2,---,N
kY, ot Y, 1), Tk =~ Y, 7 ) 94V

The proof of the following result can be seen in [5].

Lemma 1 For any 0 < T < oo, aj;, € C1(O x [0,T]), by € C°(O x [0,T]). In
%J)kELOO(OX(O’T))’ jak:172a"' N.

J
Moreover, there exists a § = §(r,T) > 0 such that for any (y,t) € O x [0,T],

particular, ajy,

)

N
S iy, €6 = 0lE* for all € € RY.

7,k=1

The existence and uniqueness solutions of the above PDE were established
in [5], see also [4].

3 A stochastic process on variable domains

Consider fixed a probability space (2, F, P) and a sequence {3;(t) : t > 0};>1
of mutually independent normalized real Wiener processes defined on it.
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Let {¢;};>1 C L2(O) be a sequence of functions such that

> lleilza (0 < oo, (8)
=1
and define
iz, t) == ¢;(F(x,t)) €0 tel0,00), j=1,2,... 9)
Observe that
;7200 = / (¢5(F(x,1)))* do (10)
Oy

- /O (6;(4))2Tac(r,y, 1) dy
Crilloill72 (o)

IN

for any t € [0, 00), where we have denoted Jac(r,y,t) the absolute value of the

determinant of the Jacobi matrix (g”_ (y,1) , and
Yi NxN

Cy+ = max Jac(r, y, ).
yeO

We consider the process
M(t) =Y B;(t);(t) t=>0. (11)
j=1

Let us denote by E the expectation with respect the probability P. Observe
that, thanks to the pairwise independence of the 3;, for any ¢ > 0 and integers
m >n > 1, we have

2

E Zﬁj(f)%(f) =t 14®220.):

L2(0y) Jj=n

and therefore, by (8) and (10), the equality (11) defines for any ¢ > 0 an element
M (t) € L?(O; x Q) which is F;-measurable, where F; is the sub-o-algebra of F
generated by the random variables {8;(s) : s € [0,t], j > 1}.

Thus {M(t) : t > 0} can be viewed as an F;-adapted process with values in
L?(0;). Observe that

EM(t) =0
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and
E|M®)320, = tD_ 10130,
=1
< tChy Z 16511720
j=1
for all t > 0.

4 A Stochastic PDE on time-varying domains

We now consider the additive noise version of (4), i.e., the stochastic parabolic
PDE with additive noise and homogeneous Dirichlet boundary condition,

AU (t) = [AU(t) — f(U(t))] dt +dM(t) in Q
U=0 on%, (12)
U(x,0) = up(x), =z € Op.

Here we interpret dM(t) as follows. Assuming enough regularity for the ¢,
formally we obtain from (11)

=y (0)dBs ¢ +ZﬁJ Wiy
j=1

where

. o B
TN = G
= V05 1) - ),

Thus,
0
E :¢J r(x,1))dB; (t) + E Bi(t)Vy¢;(F(x,1)) - E(x,t)dt. (13)

Now, making the change
Vy,t) =U(r(y,t),t) forye O,t>0,
or, equivalently,
U(x,t) =V (F(x,t),t) for x € Ot >0, (14)

and using (13), the problem (12) is transformed in the following problem on Q:
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dV(y,t) = l %1 88 (ajk(ya t)g—;;(yvt) - b(yv t) ’ Vyv(yvt)
+f(V(y, 1)) + R(y.t)] dt + dW (y,1)
in O x (0,00), (15)

V=0 ond0O x (0,00),
V(y70) = uo(T(y,O)), Yy e Oa

where
0= > 6w

and

Zﬂg Vu6i(0) - (.0, ).

Observe first that by (8) and the independence of the 3;, the process
W (t) := W(-,t) is a Wiener process with values in L?(0). For the convergence
of R(t) := R(-,t) we need some additional assumptions on the ¢;. More exactly,
we will assume that

{¢i}j=1 CHY(O) and ) I65]171 (o) < oo (16)

Jj=1

Under this assumption, R(t) is a well defined process with values in L?(0),
and more exactly

oF >
E[R(t)[72(0y < tgleagla(r(y,t),t)lfw Z 61 E 0y Yt =0.
j=1

Thus, R(t) is an Fi-adapted process belonging to L°°(0,7; L?(2 x O) for all
T > 0.

Thus, taking into account Lemma 1, from the results for nonlinear monotone
SPDE obtained in [9] (see also [10]) we get existence and uniqueness of
variational solution for problem (15). More exactly, we have:

Theorem 2 Under the assumptions (1), (2), (3), (5), (6) and (16), for any
up € L?(O) there exists a unique F;-adapted process

Ve L*(Q x (0,T7); Hy(0)) N LP(Q2 x (0, T); L*(0)) N L*(Q; C((0, T; L*(0)))
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for all T > 0, variational solution of (15), i.e., such that

Viw,y,t) = uo(r(y,0)) + W(w,y,1)
+ N
0 ov
+ —(ak(y, ) =— (w,y,s) —b(y,s) - V,V(w,y, s
/ 32 G o) ) = ) TV o

+f(V(w,y,9)) + R(w,y, )] ds

for allt > 0, P-a.s. in §, where the equality must be understood in the sense of
H=1(0) + L (0).
Then, the process U given by (14) can be interpreted as the unique solution

of (12).

Existence of random attractors (as in [3]) will be considered elsewhere.
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Abstract

In this paper we present an extension of the Fucik-Kufner result [3] to the
case of n-variational inequalities in a Hilbert space. Then we adapt that
extension to simplify derivation of useful inequalities concerning solutions
of various types of elliptic obstacle problems.

Key words: Variational inequality, obstacle problems.
AMS subject classifications: 49J40

1 Introduction

In the 1970’s there was considerable interest in the analysis of obstacle problems.
This was connected with the development of research on variational inequalities
and has been studied by many authors (see [7], [10] and references therein).
The majority of results concentrated on, natural from a mathematical point of
view, problems of existence and uniqueness of the solutions. However, in case of
variational inequalities corresponding to obstacle problems additional questions
regarding e.g. the regularity of the solutions ([5], [6]) or convergence of the
solutions ([4], [9]) or comparing of the solutions can be posed. These problems
seem to be interesting due to possible applications.

Comparison theorems for the solutions of the global obstacle problems were
introduced by H. Brezis [1], G. Duvant, J. Lions [2] and U. Mosco [8]. However
those results allowed the comparison of the different solutions of obstacle
problems of the same type.

Fucik-Kufner theorem [7] describes the constructive approach for the
comparison of the two solutions of different variational inequalities.

The generalization presented here seems to represent a very simple, unified
and straightforward method for comparing solutions of various types of obstacle
problems simultaneously.

49
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2 Comparison theorem

Firstly, we articulate and prove the following result representing the
generalization of the Fucik-Kufner theorem [7] for the case of n variational
inequalities.

Theorem 1 Let {K;}' , be nonempty, closed, convex subset of a Hilbert
space H, [ be a functional in the dual space H*, a(-,-) a coercive, bilinear
form defined on H x H and u; € K; be the solution of the variational problem:
Find u such that

a(u,v —u) > (f,v—u) for any v € K;, (1)
Let w; € K; fori=1,2,...,n such that

wy Fwe+...+w, =u +us+ ... +uy

and
n
> alug — wiyu; —w;) =0,
i=1,i#k
for some k, then w; = u; fori=1,2,...,n.

Proof. Put v = w; in (1)

> (f,w1 —u)

a(ur,wr —u1) >
a(ug, wo —uz) > (f,we — u2)

a(Up, Wy, — up) > {f, Wy — uy)

Let us sum
Zauuwz_ 1 <f7wl+ . tw _u1_~'~_un>:<f70>:07
=1

since f is a linear functional. We calculate as follows

n n

0 < Za(ui,wi—m): Z a(ui, w; — u;) + alug, wp — ug)

i=1 i=1,i£k
n n
= § a(ui, w; — u;) + aluy, E
i=1,i#k i=1 1¢k
n n
= E a(u;, w; —u;) + E a(ug, w; — w;)
i=1,i#k i=1,i#k

n n
= E a(ug — wi,u; —w;) = E a(up — w; + w; — ui, u; — Ww;)
i=1,ik i=1,i#k
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i=1,i#k i=1,i#k
n n
= = > alwi—unwi—w) < — D pllui—w |
i=1,i#k i=1,i#k

where > 0 is the constant of coerciveness. This means that every norm must
be zero, hence

W) = UL, W2 = Uy« ooy Wy = Up,.

O

In the next chapter we present an application of the above result, where
we compare solutions of three different types of obstacle problems. It is worth
pointing out that due to this result it will be possible to obtain such comparisons
simultaneously.

3 Application

We start with introducing some basic notations connected with obstacle
problems.
Let  C R™ be an open, bounded set with the boundary 9 of C*! class,
L is an elliptic operator

Le= 3 (o))

with coefficients a;; : @ — R, a;; € C1(Q) for 1 < 4,5 < n, which satisfy the
ellipticity condition i.e. there exists a positive constant p such that

n

3 ai(@)6ié; = plél forw € Q, € € R™

i,j=1

The operator L for u,v € Hg(Q) determines (see [7]) the bilinear, continuous
and coercive form on H{ (), in the following way

(Lu,v) = a(u,v) = Z /Qaij (2)Ug, (7)vg, (x)dz.

i,j=1

One version of an obstacle problem is to find the solution to the variational
inequality
a(u,v —u) > (f,v—u),Vv € K,

where f € H=1(Q) and K is a so-called admissible set whose definition depends
on the type of the obstacle problem considered.
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Let 1,0 € HYP(Q), ¥ < o on Q, 1 < 0 on 9Q and ¢ > 0 on 9. We define
the sets

K, = {veHj(Q) :¢<vinQ},
Ky = {veH}(Q) :¢<v<pinQ},
Ks = {ve H}(Q) :v<pinQ}.

It is well known (see [10]) that there exist the unique solutions of obstacle
problems with the admissible set K7, Ko or K3, respectively.

Now we show some relations between solutions of the above obstacle
problems. Let us define

wy = max(ug,us),
Wy = U]+ U+ U3 — W — W3,
ws = min(ug,us).

We see that uy + us + uz = wy + we + w3 and

CL(UQ — w1, Uy — w1)+a(u2 — W3, U3 — U}3)
=a(ug — max(u1, ug), u; — max(uy, uz))+a(us — min(uz, us), us — min(usg, usz))
=a(min(us — u1,0), min(0, u; — ug))+a(max(0, us — uz), max(ug — usg,0))
=a(max(u; — ug,0), —min(u; — ug, 0)4+a(max(ug — us,0), — min(ug — us,0))

=a((u1 —u2)™, (u1 —u2) " )+a((uz — uz) ™, (uz — uz) ™)

:/Q Z a;j(z)(ur — U2);rl (u1 — “2);jdx

+/ Z aij(z)(uz — us); (ug — usz), de = 0.

i,j=1

Finally we must show that w; € K; for i = 1,2,3. One can notice that
uy > 9, ifup > ug

wy = .
ug > 9, ifup < ug,

thus, wy € K;.

Uy yifug >wupand ug > ug =¥ <wup <ug <
CJurtug—wue, fug >us>ur = <up <upuz—uz<uz <@
e Uz yifur >us >uz =9 <up <o
U3 yifug > ug and ug > us = ¥ < ug < uz < ¢,

thus, wy € K.

ug < @, if ug < ug
w3 = .
uz < ¢, if ug > us,
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thus, ws € K3.
Theorem 1 indicates that w; = max(u1,u2) = w1 and ws = min(ug, us) =
ug, so we can deduce the following relations

up > U = ugz.

One can observe that the procedure connected with comparing the solutions
of variational inequalities is not complicated and the result is strictly following
the intuitive approach.

The advantage of the method relies on comparing n different problems
simultaneously instead of performing n — 1 repetitions of the similar techniques
connected with finding the relations between different pairs of solutions.
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Abstract

The set of planar bimodal linear control systems is partitioned into
a finite number of differentiable strata, each of them consisting of
those systems having canonical forms (for the equivalence relation which
corresponds to admissible changes of basis) differing only in the values
of the continuous invariants. Bifurcation diagrams with regard to this
stratification are derived.

Key words: Canonical form, stratification, bifurcation diagram.
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1 Introduction

Piecewise linear systems have attracted the interest of researchers because of
their interesting dynamical properties and the wide range of applications. The
most common piecewise linear systems found in practice are in two or three
dimensions. See for example [3], [4], [5].

In this paper, we tackle bifurcation diagrams for planar bimodal piecewise
control systems. We consider 2D control linear systems acting on comple-
mentary half-planes and the equivalence relation defined by basis changes,
preserving continuity along a given line (“admissible basis changes”). As
the set of equivalence classes is not locally finite, we consider the union of
equivalence classes differing only in the continuous invariants in the canonical
form under this equivalence relation found in [6]. There are a finite number of
sets in this partition, each of them is proved to be a differentiable manifold,
therefore constitutes a finite stratification of the space of systems. This is the
starting point to obtain bifurcation diagrams, with regard to this classification.
Moreover, canonical forms can be applied to study controllability and other
dynamical properties in each stratum.

In section 2, we state the definitions of bimodal piecewise linear systems and
admissible basis changes. In section 3, we recall the canonical forms for order
two bimodal systems. In section 4, we stratify the set of triples of matrices
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defining order two bimodal systems. Finally, in section 5, we show a bifurcation
diagram.

Throughout the paper, R will denote the set of real numbers, M, xm (R)
the set of matrices with m rows and n columns (in the particular case where
m = n we will denote the set simply by M,,(R)), Gi,,(R) the set of all invertible
matrices in M, (R) and by(eq,...,e,) the natural basis of the Euclidian space
R™.

2 Bimodal Piecewise Linear Systems

Bimodal piecewise linear systems consist of two linear dynamics acting on
each side of a given hyperplane. Most of elementary non-linear circuits found
in practice may be modeled with two linear regions separated by parallel
boundaries hyperplanes, with two or three state variables. See [3], [4], [7],
[8], where different topics about these systems are studied.

Bimodal (piecewise) linear systems can be defined by two control linear
systems:

&(t) = Aiz(t) + B, i y(t) <0, &(t) = Asx(t) + Ba,

y(t) = Ca(t), y(t) = Ca(t),
where Al,AQ S MR(R), Bi,By; € Mnxl(R)a C € Man(R), being the
dynamics continuous along a separating hyperplane Cx = 0 for some matrix
C € Mixn(R). For simplicity, we will consider C' = (1 0...0) € M;x,(R) and
that the dynamics is continuous along the hyperplane H = {& € R" : Cx = 0},
and hence: H = {x € R" : 21 = 0}.

Then continuity along H is equivalent to:

BQ :Bl, Azei :Alei, 2§Z§Tl

if y(t)=0

We will simply write B = B; = By. Thus any bimodal piecewise linear
system can be defined by a triple of matrices (A7, A2, B), where Ay, A differ
only in the first column.

Notation Throughout the paper, X will denote the set of triples of matrices
defining bimodal piecewise linear systems,

X = {(Al,AQ,B) S Mn(R) X Mn(R) X Mnxl(R) | Agei = Alei, 2<i< TL}
which is obviously a differentiable manifold (of dimension n* + 2n).

As in [6], we consider basis changes preserving the hiperplanes x;(t) = k in
order to allow the results below to be also applied in the cases where a separating
hyperplane z1(t) = J, § # 0, are considered (see, for example, [3]).

Definition 1 Basis changes in the state variables space preserving the
hyperplanes x1(t) = k will be called admissible basis changes. Thus, they are
basis changes given by a matriz S € Gl,,(R),

10
sz(U T), T € Gl_1(R).
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Let us denote by S the Lie subgroup of Gl,,(R)

S = {SG GZR(R)‘S: ( [1] ;) TeGln_l(]R)}

We consider the equivalence relation in the set of matrices X which corresponds
to admissible basis changes.

Definition 2 Two triples of matrices (A1, As, B), (A1, A9, B’) € X are said
to be equivalent if there exists a matriz S € S (representing an admissible basis
change) such that (A'1, A’5, B') = (S71A1S,5 1455, S 1B).

This equivalence relation partitions X into finer equivalence classes than the
similarity equivalence relation.

3 Canonical forms for n =2

A canonical form is a representative in each equivalence class which is easier to
deal with, and therefore calculations become simpler using it. In [3], canonical
forms were obtained, assuming observability. In [6] canonical forms in the non-
observable case are obtained, in the case where the observability matrix of the
system rank equal to n — 1. In particular, in the case n = 2 these canonical
forms and the matrices S which correspond to admissible basis changes are
listed below. We will use (CFN), N =1,2,... to label them.
Let us consider a triple of matrices defining an order two bimodal system

(C ) 2) ()
az as )7\ 72 as )7\ b2 '
Let us assume that the system is observable (a3 # 0). Then (see [3]),

the corresponding canonical forms A{, A5, B¢ for the matrices A;, Az and B
respectively, are:

e Case 0: ag # 0,

A — a1+ aq 1 _ tr Ay 1
L= asa3 — 104 0 o det A1 0 ’
AS — Y1+ ag 1 _ tr AQ 1
g azye —asyr 0 det A, 0 )7’

c _ by o 1 0
B_(a3bz—a4b1)’s_(g_§ aLg) (CF1)

From now on, we will assume that the system is unobservable: az = 0. We
distinguish several cases.

e Case 1: a3 =0, a1 # a4,71 # a4.
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aa—=1 a2b1

— 2
G as —ay

c_ (a1 0 c_ [N 0 c __ bl .
= a) = 0) = (0),

*If’yg:ag :0,

1
Sz(_ as ?),foranyt;éo. (CF2)
aq—ai
— If 7y = ap P22 by + 20 £ 0,
e (a1 O e _(m O c _ by .
Al—(o CL4),A2_<O CL4),B —<1 )
1 0
S:< " u ) (CF3)
_a4—2a1 b2 + bl a4—2a1
- If Y2 7& a2 31:317
by
0 Y1 0 a
Ai:(al >’ 52( )’BCZ b2+bla43a1 )
0 a4 Loa raaa ik
1 0
S = a au— . CF4
<_ a4—2a1 72 - a2 ai—Zi) ( )
e Case 2: a3 =0, a; = aq, 71 # a4.
— Tfay = 0,by + 2% =0,
e (a4 0 c__ [N 0 c __ by .
oy 2) (3 2)or- )
1
S = (_ Y ?) for any t # 0. (CF5)
as—"1
7Ifa2:0,b2+%7b;1#07
e fas O c_(m O c_ (b1,
(i )3 2)- ()
1 0
S = . CF6
(_ a4’Y—2’Yl b2 + bl a4’Y—2’Y1 ) ( )
—IfCLQ?éO,
ay 0 c 7 0 c b
AS = 5 — 7B = )
= (0 =00 = (i
1 0
s;( ) (CF7)
_a4’y—2'y1 a2
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e Case 3: a3 =0, a1 # a4,71 = aq.

- If’yg ZO,bg 20,
c_ [O1 0 c __ [04 0 c b1 .
(0 a) (0 = (6):
1 0
S = (_ as t) , for any t # 0. (CF8)
aqg—aq
— Ifag =0,b2 7&0,
c__ [ 0 c__ [Q4 0 c _ bl
ai= (3 a) = (8 0) e = (1),
1 0
= a . F
° (— py— b2> (CE9)
- If a 75 0,
AC — aq 0 AC a4 0 B¢ — bl
P70 ag)” 72 1 ag)’ B ,Y%{bg-i-blaf_zal} '
S = ( 1a2 O) . (CF10)
T aa—a 12

e Case 4: a3 =0, a1 = a4 = 1.

fIfaQ:O,A/g:O,bl#O,
0 c __ [04 0 c b1 .
o) = (5 0) - (6)
(t)) for any ¢ # 0. (CF11)
—IfCLQ:O,’YQ:O,bl:O,bQ:O,
e fas O e fas O A
A= n) = (6 0) =)
1 0
S:(u t>’ for any t#0,u. (CF12)

- IfCLQZO,'YQ:O,bl:O,bQ?éO,

c_ [Q4 0 c_ (a4 0 c _ 0 .
= )= 0) o =)

1 0
S = (u b2> for any w. (CF13)
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e fas O . ag O c b1

ai= (5 w)o = (3 0) = (5):
1 0

S = . CF14
(2—? 72) ()

S = <1 0) for any w. (CF15)
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1 0
S = . CF16
(& =) .
— Ifay #0,b =0,
c _ a4 0 c a4 0 c 0 .
() =3 ) =)
1 0
S = < w as ) , for any u. (CF17)

4 Stratification

A finite partition of the differentiable manifold X may be deduced from that in
equivalence classes: consider the sets consisting of all equivalence classes with
canonical forms of the “same type”, but with different values for the parameters.
The sets thus obtained are disjoint sets and, as we will show, differentiable
manifolds. Therefore, they constitute a stratification of X

In order to use Arnold’s techniques (see [1]), the starting point is that
equivalence classes are the orbits of the Lie group action of § on X defined
by a(S, (Al,Ag, B)) = (SilAlS, SilAQS, SilB).

Given (A4, Az, B) € X, we will denote by O(A1, Az, B) its orbit and consider
the partition of X into sets, each of them corresponding to the union of orbits or
equivalence classes having associated a canonical form of the same type; namely,
F is the set of all triples of matrices having canonical form of type CF1, E,
the set of all those having canonical form of type CF2, and so on. Note that
these orbits are differentiable manifolds (see [9]).

Theorem 1 The sets E;, i =1,...,17 are differentiable manifolds.
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Proof. E;, i # 2,5,8 are open sets of linear varieties. Fs, F5 and Eg are
defined by quadratic equations, giving rise to implicit manifolds with no singular
points. Thus they all are differentiable manifolds. O

17
Corollary 2 X = <U E1> is a finite stratification of X.
i=1

Proof. Clearly, these sets are disjoint sets and constitute a partition of X.
From Theorem 1 they are differentiable manifolds, thus a stratification of X.
O

Next Table shows the dimensions of the strata above.

Stratum | Dimension | Stratum | Dimension | Stratum | Dimension
FEq 8 FEs 5 FE3 6
Ey 7 Esx 5 FEg 5
E; 6 Ex 5 Ey 4
E1o 6 L 3 Eia 1
E3 3 By 4 Eis 3
Eng 5 By 4

5 Bifurcation diagrams
A bifurcation diagram of a family of bimodal systems,
AR — M, (R) x M, (R) x M,x1(R)

is a partition of the parameter space R? according to the canonical form of the
triple of matrices, and induced by the stratification which was given in Section 4.
In particular, this stratification provides the information about which canonical
forms are near each other in the sense of local perturbations.

Let us show as an example about how a bifurcation diagram may be
obtained.

Example 1 Consider the triple of matrices ((? g) , <_12 g) , (_11)> and

the effect of a perturbation on it:

2 &1 1 &1 1
<( l4+ey 3+es ),< —9 34ey ),< 1 )), for small e1,e2,¢3.

If 1 = €9 = €3 = 0, we obtain the initial triple, which belongs to Eo. If
g1 =0, e3 # 0, we obtain a triple in Ey. If e1 = e3 =0, 5 # 0, we obtain a
triple in Fs. Finally, in the case where €1 # 0, we obtain a triple in F;.
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Abstract

This paper discusses combination resonance phenomena in parametric
systems of two or more degrees of freedom starting from a theoretical
result by Mailybayev & Seyranian. We present, to the best of our
knowledge, the first example of difference combination resonance in a
mechanical system. That is, where the system may exhibit significant
response when forced with an external frequency that is the difference
between its two internal resonant frequencies. The model system studied
is a double pendulum with a follower load, a non-conservative force that
would be described for example by an oscillating jet of fluid, like an
idealized garden hose. For this example, after the inclussion of gravity, the
difference combination frequency may be lower than the two individual
resonant frequencies, a surprising effect that should be taken into account
when analyzing the stability of other high-dimensional systems.

Key words: combination resonance, follower pendulum, parametrically
excited dynamical systems
AMS subject classifications: 37B55, TOK28

1 Introduction

Dynamics systems subject to a parametric excitation are such that the
forcing terms appear as (usually periodic) time-varying coefficients of the state
variables. The canonical example is the Mathieu equation, which can be written
in dimensionless form

&+ (a+bceos(t))z =0, (1)

in which the period of excitation is scaled to 2. Here the parameter b represents
the strength of the applied parametric forcing (scaled by the square of the
frequency) and a is the square of the ratio of natural frequency to forcing
frequency. The shape and properties of the instability tongues are well known,
as are their properties if one adds a small amount of damping, see e.g. [3, 6, 1].
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In particular, for small forcing and damping harmonic instabilities (which
correspond to pitchfork bifurcations of the trivial solution) occur in thin tongues
that originate from every value of a that is equal to the square of an integer; and
sub-harmonic (period-doubling) instability tongues originate from point every
a=02n—-1/2)2,n=1,2,....

For example, the Mathieu equation arises if one looks for instabilities of
the trivial solution to a simple pendulum whose support is subject to periodic
acceleration equal to A cos(€2t). The equations of motion of such a system in
the presence of small linear damping can be written in the form

0 + ¢ + [k + 6 cos(t)] sin(f) = 0, (2)

where ¢ is the damping coefficient, k = g/l, g is acceleration due to gravity, [ is
the length of the pendulum and 6 = A/I.

This paper concerns a different phenomenon for multi-degree-of-freedom
systems, namely that of combination resonance, where an instability occurs
for the trivial solution when the parametric excitation frequency €2 is close to
the sum or difference of two of the natural frequencies of the system wi + wo.
There are many examples of such combination resonances in the literature.
For example, the book by Nayfeh [7] considers many such cases, especially of
mechanical systems where the two modes are derived from a Galerkin reduction
of a continuum system such as a plate or beam. In all these examples, though,
it is a sum combination resonance that is excited 2 =~ w; + ws. However,
there do not seem to be any concrete examples of difference resonances in the
literature. In fact, such a mechanical device might be somewhat strange. If
we had wy; &~ wsy, then 2 = w; — we would be small, perhaps several orders of
magnitude smaller. So a difference combination resonance would give a response
at a high frequency from low frequency excitation. This would be like making
a drum vibrate by sending it up and down in an elevator!

This paper presents an example of a system that has just such a property.
Based on some theoretical results by Mailybayev and Seyranian [4] (summarized
in the next section) we show in Section 3, that a difference combination
resonance may occur in theory in a simplified model of a hose with time varying
flow, namely a double pendulum with a combination of purely follower and
constant-directional loads. Section 4 then carries out a preliminary numerical
parameter sweep to verify that this effect is indeed seen in practice. Finally
section 5 draws conclusions and points to future work.

2 A Parametric resonance theorem

Consider a linear m-degree-of-freedom linear system (m > 2) with periodic
coeflicients that can be written in matrix form as

My + 4Dy + (C + dB(2t))y = 0. (3)

Here M, D and C are symmetric, positive definite matrices, B(7) is a piecewise-
continuous 2m-periodic matrix function of 2t that contains the parametric
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excitation terms, y is an m-dimensional vector of generalized coordinates and
~v and § are small parameters.

Let w; and w; be two normal modes frequencies (that is natural frequencies
of the problem when 6 = v = 0). Then we define:

Fundamental resonances to occur when Q = 2w;/k with j = 1,...,m
and k£ = 1,2,.... If k is even then these are equivalent to the harmonic
(pitchfork) bifurcations of the Mathieu equation. If k is odd these are the
sub-harmonic (period-doubling) bifurcations.

Combination resonances: Q = (w; + w;)/k with w; > w; and k =1,2,....
The sign ‘+’ corresponds to sum combination resonances, and ‘—’ to
difference combination resonances.

Theorem 1 ([4]) If B(7) is symmetric, then the system may be subjected
only to fundamental and sum combination resonances.

If B(1) = ¢(7)Bo one obtains fundamental resonances and, combination
resonances for Q = wysign(c;;j)wa, where

Cij = u'fBgujujTBoui 5
where u; are the eigenvectors of the conservative system
My +Cy =0

To explain this result, it is sufficient to consider (3) in the case m =2,y =0
and where B(t) is a constant matrix times a sinusoidal function, B = By cos(§2t).
Suppose further that we change coordinates so that the system with § = 0 is
written in diagonal form, and finally that time has been rescaled so that 2 = 1.
Hence we obtain a system of the form

) a; 0 bi1 b2 T\ _
(2 )+ 105 @) oG i )] () =0
where a; = w?/02, ay = w3/0? and the matrix B = {b;;} is the original
constant matrix By written in the transformed coordinates. Recalling how one

computes stability curves for the Mathieu equation using Floquet theory, see
e.g [3], we can look for solutions to (4) in the form

oo oo
T = E cneznt/\/i’ Ty =+ § cneznst/\/§7

n=—oo n=—oo

where s = £1 and ¢, are the Fourier coefficients. We find an infinite system
of algebraic equations. It is straightforward to see that in the case § = 0,
there is a non-trivial solution with ¢,, = 0 for all n # k and ¢ # 0, whenever
a1 + sag = k2. This would suggest that both sum and difference combination
resonances are possible. However, when looking at the conditions for the
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b rrn S

Figure 1: Schematic diagram of a planar double pendulum with stiff joints, and
a (non-conservative) follower force and a (conservative) parametric force acting
at the free end of the device. Here a € [0, 1] represents the relative contribution
of these two end-forces. The dimensionless equations of motion are given in (6).
If g > 0 then gravity is assumed to be acting in the vertically upwards direction.

bifurcation equations to have a real solution for nonzero §, one finds the following
condition

C12 = Sign(blgbgl) = S. (5)

That is, to excite a sum resonance, the off-diagonal entries of By must be of
the same sign, and to excite a difference resonance these diagonal entries must
be of opposite sign. In particular, if B is symmetric matrix (as is the case
in many mechanical applications) then only sum combinations can be excited.
In fact, it can be argued (see references in [4]) that pure Hamiltonian systems
can never excite difference combination resonance; in other words, if difference
parametric resonance is possible at all, then the matrix B({2t) must contain
non-conservative terms.

3 The follower pendulum

Canonical examples of mechanical systems that contain non-conservative forces
are those that involve fluid-structure interaction [5]. The simplest form of such
systems arise in models for hose pipes or structures with attached jets, where
the fluid inside the mechanism is only modelled via a so-called “follower force”
that is aligned with the end of the mechanism. A particular simple example is
that of a pendulum with a follower force, which is represented in Fig. 1.

Following [2] (see also [8]) the equations of motion of such a device can be
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written in dimensionless form as

(1 + m)01 + COS(Gl — 92)52 + 2661 — Cég + 2601 — 6y + 93 sin(01 — 02)
=p(Q)(1 — ) sin by + asin(f; — 02) — g(1 + m) sin(6;)

(6)
COS(Gl — 92)9.1 + ég + C(él — 92) — 01+ 05 + 0% sin(91 — 92)
=p()(1 — ) sin by — gsin(bs) .

Here it is assumed that the two joints have equal stiffness and damping,
m = msg/m; represents the ratio between the moments of inertia of the two
pendulums, ¢ < 1 is a dimensionless damping coefficient and we assume
that the forcing term p(Qt) is assumed to be a 2m-periodic function of its
argument, (specifically for the numerical computations in the next section we
take p(t) = dcos(2t)). The original motivation for including the parameter «
was to introduce a homotopy that enables one to pass from a purely conservative
system (if ¢ = 0 also) when o = 0 to a non-conservative system when a = 1.
The new ingredient here is to additionally include the effects of gravity via the
terms proportional to g which represents the ratio of gravitational to stiffness
forces.

Taking the case g = 0, after linearization about the trivial equilibrium
position 01 = 63 = 0, a straightforward calculation for (6) reveals that for
a=20

1 2
C12 = —1(1 +m)* >0,

whereas for a =1,
Cl12 = —1.

Thus, since c15 is a continuous function of «, we conclude that for sufficiently
large follow forces, the system is indeed of the right form to excite difference
combination resonances.

A detailed two-timescale perturbation expansion was carried out in [9] for
g = 0, a = 1, in which it was found that for small ¢ and p the difference
combination resonance does indeed lead to nontrivial responses of the system for
(6). Rather than reproduce this lengthy, but standard, analysis, we turn instead
to numerical results to illustrate the occurrence of the difference combination
resonance.

4 Numerical computations

The response of the systems has been computed as the time averaged norm of
the position and velocities after 200 time units staring from small amplitude
random initial conditions. The resonances will be detected as an increase of
this response function as we sweep in frequency. To illustrate the validity
and difficulties of this detection method we plot in Figure 2 the behavior of
the response function for the Mathieu equation (2). We would expect some
structure for  ~ 1 and  ~ 2 (corresponding to crossing of the branching
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response

K’

T e T T g e o
Figure 2: (Lefty Response of the Mathieu system as a function of the frequency
Q for § = 0.5, ¢ = 107" and a small amplitude random initial position. (Right)
A zoom around the frequency 1 displays a much weaker resonance.

point (BP) and period doubling (PD) curves in the typical Mathieu tongues
diagram). A strong resonance structure around the period doubling frequency
is clearly visible inidicating that the system is in the highly nonlinear region.
The BP resonance is only visible after a zoom process and is shown in the right
panel of Figure 2.

Performing a similar numerical computation for the follower pendulum
system (6), we obtain the response function shown in Figure 3 and 4 for the
cases of zero gravity (double pendulum in an horizontal table) and non vanishing
gravity (hanging double pendulum).

In agreement with the theoretical prediction the sum combination resonance
is present for the purely conservative case (o = 0) whereas the difference
combination resonances is only possible for the purely follower situation (o = 1).
The transition from one case to the other and the interaction with the other
fundamental resonances visible in the numerical experiments will be subject of
future study.

It is worth noting that the presence of a difference combination resonance in
the latter case (with gravity) occurs for frequencies much lower than any of the
internal frequencies of the system (normal modes). This unexpected results may
have relevant implications while evaluating the stability of analogous structures
or, in the positive side, to take advantage of the increase of response at or close
to the resonance in a "energy harvesting" device.

5 Conclusion

This paper has produced as far as we are aware the first physically realizable
example of a system that can excite difference combination resonances. The



Difference combination parametric resonance 69

response
response
o
8

AR
“ ~+ 1

o 05 1 15 2 25 3 [ 05 1 15 2 25 3
o1 20 Wp—my W  Wptq Q 01 2wy gy 2 W2ty Q

Figure 3: Response of the follower pendulum without gravity for a« = 0 (left)
and o = 1. The vertical lines are a guide for the eye to locate the position of
the predicted fundamental and combination resonances

reason why such systems have previously not been observed appears to be
because of the requirement (5) with s = —1, namely that the appropriate
portion of the parametric forcing matrix must have skew-symmetric terms. In
rotating systems it is well known that such skew symmetric terms can arise
in stiffness and interia matrices M and A due to Coriolis forces or gyroscopic
effects, and indeed can give rise to Hopf bifurcations. However, it seems hard
to imagine a mechanical system for which the unforced system does not have
these rotational effects but the parametric excitation terms do. Instead, we
have found an example of mechanical systems with follower forces where we
have been able to show the required condition (5) is satisfied with s = —1.

This paper presents just a preliminary study of the difference parametric
resonance phenomenon. Future work will present detailed numerical
continuation results that map out in the parameter space of (6) regions in
which difference combination resonance can arise, and in particular to search
for regions in which w; =~ wy so that the difference resonance can exist for
frequencies way below the two fundamental resonances. We will also consider
the implications for the nonlinear dynamics of the system.
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Abstract

In this paper we consider a class of nonlinear stochastic partial
differential equations (SPDEs) driven by a fractional Brownian motion
with the Hurst parameter bigger than 1/2. We show that these SPDEs
generate random dynamical systems.
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1 Introduction

A central mathematical object in Stochastics and Stochastic Processes is
the Ito integral. It plays an important role in many areas of pure and
applied mathematics including mathematical finance, population dynamics,
fluid dynamics, statistics, signal processing, control, particle systems, to name
a few. The integrator of such an integral is often chosen to be the Brownian
motion (the Wiener process) or its semimartingale generalizations. These
random functions are of unbounded total variation, so that their Stieltjes
integrals do not exist. Special properties of the integrators and the integrands
are necessary to generalize the definition of the Stieltjes integral to the Ito
integral, and enable the definition of solutions of differential equations driven
by Brownian motion.

A property of paramount importance to this effect for Brownian motion is
the independence of its increments. To move beyond integrals and processes
constructed using this property is one of the most important tasks in the
theory of Stochastics. We are most interested in using the fractional Brownian
motion (fBm) process B where H € (0,1) is fixed. It is a type of stochastic
process which deviates significantly from Brownian motion and semimartingales.
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As a centered Gaussian process, it is characterized by the stationarity of its
increments and a medium- or long-memory property which is in sharp contrast
with martingales and Markov processes. It also exhibits power scaling and path
regularity properties with Holder parameter H, which are very distinct from
Brownian motion (note that the Brownian motion is included in this family of
models when considering H = 1/2). Fractional Brownian motion has become
a popular choice of late for applications where classical processes cannot model
these non-trivial properties; for instance long memory, which is also known
as persistence, and corresponds to the case H € (1/2,1), is of fundamental
importance for financial data and in internet traffic, see [12], [16] . Fractional
Brownian motion is also a good candidate to model random long time influences
in climate systems, see [15].

Ever since the pioneering works of Zihle [17], Decreusefond and Ustiinel
[5], and Lyons [11], the main thrust has been to understand how to perform
stochastic integration with respect to fBm in a way which is consistent with
some properties of the classical Ito theory for Brownian motion. In the case of
higher regularity (H > 1/2), simple trajectorial methods, labelled as pathwise,
can be used which make it easy to translate one integration theory into another,
as fractional derivatives allow a pathwise estimate of the integrals in terms of
integrand and integrator using special norms. Pathwise integrals historically
gave the first cases where adequate solutions to stochastic differential equations
(SDEs) were established, e.g. Nualart and Rascanu [14]; infinite-dimensional
equations have been treated with the same success as finite-dimensional ones,
e.g. Nualart and Maslowski [13], Garrido-Atienza et al. [6].

In this paper, we aim to investigate the equations’ asymptotics. There are
two theories dealing with the asymptotic qualitative behavior for general SDEs:
the theory of random dynamical systems (RDS) and the theory of existence
and uniqueness of invariant measures for the associated Markov semigroup.
However, similarly to fBm itself, equations driven by fBm do not generate a
Markov process; this precludes the study of invariant measures using classical
tools for fBm-driven systems. This motivates our plan to concentrate on the
study of fBm-driven SDEs as RDS.

The theory of RDS, developed by L. Arnold and coworkers, see [1], can be
used to describe the asymptotical and qualitative behavior of systems of random
and stochastic differential/difference equation in terms of stability, Lyapunov
exponents, invariant manifolds, and attractors.

As we have said, considering fBm instead of Brownian motion has some
advantages because of the nice properties that the fBm enjoys and the Brownian
motion does not. Another crucial advantage is the following: for many
Brownian-driven SPDEs with non—trivial diffusion coefficients, it is not known if
these equations generate a RDS. The reason is that usually stochastic differential
equations are only defined almost surely where the exceptional set may depend
on w since this exceptional set is related to the definition of an Ito integral which
is defined as a limit of random variables in probability. And such a family of
exceptional sets does not allow to use the theory of RDS. But we can overcome
such exceptional sets dealing with SPDEs driven by a fBm with H > 1/2,
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provided the stochastic integrals are interpreted in the pathwise sense.

2 Preliminaries on random dynamical systems

In this section we review some basic concepts and results on random dynamical
systems that will be used later.

In the next definition, we introduce a system that models the evolution of a
noise.

Definition 1 A metric dynamical system (0, F,P, {0, }1er) with two-sided time
T (which is R in the continuous case and Z in the discrete one) consists of a
probability space (Q, F,P) and a family of transformations {04 }ter such that:
1. It is a one-parameter group, i.e.

90 = ldQ, 9t+5 = 0t05,Vt,s S T,

2. (t,w) € T x Q — O,w 1is measurable,

3. P is invariant with respect to 0, i.e., ;P = P, for all t € T, which means
that P(6:A) =P(A), for all A€ F and all t € T.

4. P is ergodic with respect to 0, i.e, for any {0;}ier-invariant set B € F, which
means that 0, B = B for all t € T, we have either P(B) =0 or P(B) = 1.

We now introduce a couple of examples of metric dynamical systems. Let
V=W,"I,(,-)) be a separable Hilbert space.

Consider first the Brownian motion. We choose for €2 the set of continuous
functions CY = Cy(R, V) on R with values in V which are zero at zero. On this
set we introduce the compact open topology given by the uniform convergence
on compact intervals in R. The Borel-o—algebra over this space is denoted by
B(CY). IE”% is the Wiener measure. The existence of such a canonical process

(Cy',B(Cy'),Py) follows by Kolmogorov’s theorem about the existence of a
continuous modification of a process, see Bauer [2]. The flow 6 is given by

() = w(- +1t) — w(t), we (1)

which is called the Wiener shift. The Wiener shift is measurable, see Arnold
[1] Page 544, because C\ is separable and (t,w) +— 6w is continuous. We
emphasize that this metric dynamical system is ergodic, see Boxler [3].

Now let us introduce the fractional Brownian motion. Given H € (0,1), a
continuous centered Gaussian process 3 (t), t € R, with the covariance function

1
EG7 (187 (s) = S (7 + [s] — |t = s[*),  t,s€R

is called a two-sided one-dimensional fractional Brownian motion (fBm), and
H is the Hurst parameter.

Assume that @ is a bounded and symmetric linear operator on V' which is
of trace class, i.e., there exist a complete orthonormal basis {e;};cny in V and a
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sequence of nonnegative numbers {\; };en such that tr@Q = Zfil Ai < oo and
Qe; = N\ieg, 1 € N. A continuous V -valued fractional Brownian motion B with
incremental covariance operator () and Hurst parameter H is defined by

B =3 Vhesl (D), teR
i=1

where {3 (t)};en is a sequence of stochastically independent one-dimensional
fBm. Notice that the above series is convergent in L?(Q, F,P) since Y .o, A; <
oo and E(B(t))? = [t|*" for t € R.

Remark 1 BY/2 is the Brownian motion.

Using the definition of B, Kolmogorov's theorem ensures that B has a
continuous version. Thus we can consider the canonical interpretation of an
fBm: let Q = Cy(R, V), equipped again with the compact open topology. Let
F be the associated Borel-o-algebra and Py the distribution of the fBm B,
and {0:}:cr be the flow of Wiener shifts defined by (1). Then the quadruple
(Q, F,P,0) is a metric dynamical system which is ergodic, see [9]. Furthermore,

BH(w)=w(), BH(,0,w)=BY(+rw) —Bi(rw) =w-+7r)—w(). (2)

We now introduce the concept of random dynamical systems that is used to
describe the dynamics of systems under the influence of a noise.

Definition 2 A random dynamical system (RDS) with one-sided time T and
phase space V' is a pair consisting of the metric dynamical system (Q, F,P,0)
and a mapping ¢ : Tt x Q x V — V which is (B(TT) @ F @ B(V),B(V))-
measurable and satisfies the cocycle property

o(t,0,w,)op(r,w,") =@t +T1w,), fort,7€TH weQ,
0(0,w, ) =idy.

A typical example of cocycle mapping is the solution operator of finite or
infinite dimensional differential equations with random coefficients satisfying
particular regularity assumptions. Another example is the solution operator
of finite dimensional Ito-equations. As we announced in the Introduction,
for infinite dimensional Ito-equations with non-trivial diffusion coefficients this
problem is rather unsolved.

Notice that the cocycle property is the generalization of the semigroup
property; in fact, if we deleted all w-dependence in the cocycle property we
would just get the semigroup property.

We want to stress that we have required the MDS to be defined on two-
sided time T, while the RDS is only required to be defined on one-sided time
T+. The reason is that we cannot expect the mapping ¢ to be defined on T,
since it is given, for instance, by the solution operator of a SPDE, which is
not invertible in general. However, we can consider expressions of the following
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type: o(t,0_w,x), for v € V, w € Q, t € TT, expressions that play a crucial
role when analyzing the existence of random fixed points or random attractors
associated to the RDS ¢, see [8].

As we have mentioned, the purpose of this paper is to show that an infinite
dimensional stochastic differential equation driven by an fBm with general
diffusion coefficients generates a random dynamical system.

3 Main results

In this section we first introduce some basic concepts and results on fractional
calculus and stochastic integrals with respect to the fBm 3% and BH.

For T > 0, let W*1(0,T;V) be the space of measurable functions f :
[0,7] — V such that

where 1 — H < o < 3 is fixed, so we need to consider from now on H € (1/2,1).
Following Zihle [17], for f € W*!(0,T;V) we define the stochastic integral
as the generalized Stieltjes integral

T T
/ fapt = (—1)° / DG, f(s) D BH_(s)ds. (3)
0 0
t T
/ fdpt = / fl(s)t)dﬁH, for0<s<t<T,
s 0

where, in general, for 0 < a < b < T, BH (s) := pH(s)— B (b), and fora < t < b
the Weyl derivatives are given by

« -~ 1 Lf(t)
P20 = = (e + o Gt )

_ 1\l H H H
D;aﬁf(t):(rl()a) (6 (I())_t)lﬁab) /ﬁ Odé)

where T' denotes the Gamma function. It can be proved (see, for instance,
Nualart and Régcanu [14], Decreusefond and Ustiinel [5], Zihle [17]) that the
stochastic integral (3) exists.

Now we define the stochastic integral with respect to the infinite dimensional
fBm BH. Let L(V) denote the space of linear bounded operators on V and let
G :Qx[0,T] — L(V) be an operator such that G(w,-)e; € W*1(0,T;V) for
each i € N and w € Q. We define

/de_Z/ G(s)Q"?e;dBH (s) Z\/_/ G(s)edB(s),  (4)

where the convergence of the sums in (4) is understood in V.
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The following result establish that when making a change of variable in the
stochastic integral, we not only have to shift the integration interval and the
variable but also the path of the fBm (for the proof, see [6]).

Lemma 1 For a,b,r € R, assuming that both integrals are well-defined,

/ G(s)dw(s N G(s+r)df,w(s).

-r

Consider now the following stochastic evolution equation in V'

{ du(t) = (Au(t) + F(u(t)))dt + G(u(t))dw(t), (5)
u(0) =up €V

where w denotes the infinite dimensional fBm B (see (2)).

Assume that A is the infinitesimal generator of an analytic semigroup S(-),
and that F' : V — V is Lipschitz continuous with Lipschitz constant Ly, and
G:V — L(V)and G : V — L(V,L(V)) are Lipschitz continuous in the
following senses:

sup [G(v1)e; — G(v2)ei]| < Lallvr — va, (6)
i€

sup G (v1)e; — G'(v2)eill vy < Ligllor — vall, (7)
1€

where {e; };en is the complete orthonormal basis in V' introduced in Section 2.
The solution of (5) on [0,7] is a V-valued process u whose paths are for
every w € Q elements of W*(0,T;V), for an a € (1 — H, 3), and

:S(t)uo+/0 S(t—s)F(u(s))ds—i—/O S(t—$)G(u(s))dw, te0,T], (8)

where the stochastic integral has to be understood according to (4).
For such an a € (1 — H, 3), denote by WE(0,T;V) the Banach space of
measurable functions x : [0,7] — V such that

x(t
||x||a,gg— Sup e ot <||x ||+t5/ ” 1+a ol r) <

for ¢ > 1, and € € [a,1 — a). The role of the factor ¢ is crucial when proving
the following existence theorem, which proof can be found in [6].

Theorem 2 Let o € (1 —H,3), 0 > 1 and { € [a,1 — ). Assume F is
Lipschitz continuous, and that G and G’ satisfy (6) and (7). Then, for each
initial point ug € V there exists a unique solution to equation (8) with its paths
in W (0,T5 V). In addition, the mapping ® : V. — W (0,T;V) given by
D :ug — u is continuous for w € Q.
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Theorem 3 The solution w of (8) defines a random dynamical system ¢ :
Rt x QxV —V, given by

o(t,w, up) uo—|—/ S(t—s) (u(s))ds—i—/o St — s)G(u(s))dw.

Proof. The measurability follows by [4] Lemma III.14.
Trivially ¢(0,w,z) = wug. Let us check then the cocycle property: for
t, e Rt weQand uy €V, we have

t+7
ot + 1, w,up) = St + 7)uo —|—/0 S(t+7—5)F(u(s))ds

t+7
+/o S(t+7—5)G(u(s))dw(s)

=5t < T)uo + / S(t —s)F(u(s))ds + /07' S(r— s)G(u(s))dw(s))
t+r t4T
+ /T S(t+71—s)F(u(s))ds + /T S(t+ 71— 5)G(u(s))dw(s).

Making the change of variable s — 7 = r, applying Lemma 1,

/THT S(t+ 7 — )Gl / S(t = 1)G(ulr + 7))dbw(r),

and then, setting y(s) = u(s + 7), for s € [0, ],

ot + 7w, ug) = /St—r dr—|—/5t—r (r))dfrw(r)
= @(t,0,;w,) o o(T,w, up).
O

Proving that our stochastic equation (8) generates a RDS is the starting
point to analyze its asymptotic behavior. One possibility, which is a key concept
describing the dynamics of RDS generated by fBm-driven SDEs, is the so-called
global attractor, which is an invariant compact random set attracting other
bounded random sets. The essential dynamics take place in a neighborhood of
the attractor (see [8]). Another option to discuss the stability of fBm-driven
SDEs is to study the existence of stable and unstable manifolds and Lyapunov
exponents, see [10] and [7]. Such smooth manifolds are invariant under the
dynamics of the systems, and on them, the states are attracted or repelled by
a steady state.
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Abstract

Determination of stability or instability of a given orbit of a scalar
interval map is investigated in terms of the sign of the Lyapunov exponent
of the orbit. It is proved that an orbit of such a C* map with a negative
Lyapunov exponent is stable. To prove instability, the classical notion
of Lyapunov exponent is strengthened by introducing a new quantity
called strong Lyapunov exponent. Then, it is proved that an orbit of
a C' interval map with a positive strong Lyapunov exponent is unstable,
or equivalently, exhibits sensitive dependence on initial conditions. It
is also shown that positive Lyapunov exponent suffices if an additional
assumption is made about the critical points of the interval map.

Key words: Interval maps, Lyapunov exponent, stability, strong Lyapunov
exponent, sensitive dependence on initial conditions.
AMS subject classifications: 37075, 37TD45, 3TE0S.

1 Introduction

Let us consider a mapping f : [0, 1] — [0, 1] of the unit interval into itself and a
positive orbit {z, }52, through an initial value x¢ € [0, 1], where z,,11 = f(zy,).
A question of paramount interest is the determination of stability or instability
of a given such orbit. For the sake of concreteness, we proceed with the
definitions of these classical notions.

Definition 1 (Lyapunov stability) Let f : [0, 1] — [0, 1] be a mapping of the
interval. The positive orbit {x,}72, through an initial value xo € [0, 1] is said
to be Lyapunov stable if for all € > 0 there exists § > 0 such that if |y — xo| <9
then | f™(y) — f™(x0)| < € for all n > 0.

In recent times, Lyapunov instability, equivalent to sensitive dependence on
initial conditions, has played a prominent role in “chaotic” dynamics [1, 2, 5].

79
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Definition 2 (Sensitive dependence) Let f : [0, 1] — [0, 1] be a mapping of
the interval. The positive orbit {x,}>2 through an initial value xo € [0, 1]
ezhibits sensitive dependence on initial conditions, if there exists € > 0 such
that given any § > O there exists y with |y — 20| < § and N > 0 such that

Y (y) = F¥ (wo)| > e

The most significant scalar quantity attached to an orbit {x,, }°2, that does
not include a critical point of the map and for which f’(x,,) exists for n > 0, is
its Lyapunov exponent.

Definition 3 (Lyapunov exponent) The Lyapunov exponent A(zo) of a positive
orbit {x,}°2, of an interval map f :[0, 1] — [0, 1] is defined as the number

n

Ao) = lim —— 3" In[f'(a)]

n—oo n 1
+ k=0

if the limit exists.

It is a popular practice, especially in experimental dynamics, to associate a
positive Lyapunov exponent with instability and a negative Lyapunov exponent
with stability of an orbit. However, this practice is without a firm mathematical
foundation unless certain restrictions are imposed on a map. Indeed, recently
Demir and Kogak [3] have constructed a piecewise linear continuous map of the
interval with an orbit which has a positive Lyapunov exponent but the orbit
does not exhibit sensitive dependence on initial conditions. They also produced
another piecewise linear continuous map of the interval with an orbit which has
a negative Lyapunov exponent but the orbit does exhibit sensitive dependence
on initial conditions. In this paper we announce three theorems regarding the
determination of stability or instability of an orbit of a scalar map from the
Lyapunov exponent of the orbit.

2 Summary of Results

The first theorem establishes the stability of an orbit of a C2-scalar interval map
with a negative Lyapunov exponents. This simple differentiability assumption
proves sufficient to overcome the difficulty demonstrated by the example of
Demir and Kogak [3] referred to above.

Theorem 1 Suppose f :[0,1] — [0,1] is C2. If an orbit {z,, }5°, has negative
Lyapunov exponent A\(xg) < 0, then the orbit is Lyapunov stable (in fact it is
exponentially stable).

The proof of this theorem is similar to the proof of the analogous theorem
for differential equations which goes back to Lyapunov. For the details, see [4].

Dealing with the pathology exhibited by the second example of Demir and
Kocak [3] proved to be more challenging. A simple differentiability assumption
does not, in general, appear to be sufficient for a positive Lypaunov exponent
to imply sensitive dependence. To obtain a reasonably general result, we were
forced to strengthen the notion of Lyapunov exponent.
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Definition 4 The strong Lyapunov exponent of an orbit {x,}32 is defined as

the number
i+n—1

.1
A(mo) = lim — > I f ()],
k=i

if the limit exists uniformly with respect to i.

Now, with this new notion of strong Lyapunov exponent, we can prove the
following result:

Theorem 2 Suppose f :[0,1] — [0,1] is C1. If an orbit {x,}°, of f has
a positive strong Lyapunov exponent A(xg) > 0, then the orbit has sensitive
dependence on initial conditions.

The proof of this theorem follows from a more general statement where the
assumption that the Lyapunov exponent is uniform is replaced by the weaker
assumption that the orbit stays away from a critical point. This stronger
theorem is provided by showing that the assumption that a neighbouring orbit
always stays nearby leads to a contradiction. For the details, see [4].

The preceding theorem could not, in general, be applied to a chaotic map
as such maps usually have critical points and most orbits would be dense and
hence come arbitrarily close to critical points and such orbits cannot have strong
Lyapunov exponents. In the theorem below we exhibit a class of maps with
critical points for which a positive Lyapunov exponent does imply sensitive
dependence even for orbits which come arbitrarily close to critical points. This
class includes the map f(z) = 4z(1 — z).

Theorem 3 Let f : [0,1] — [0,1] be a C* map such that f'(c) = 0 for a
unique ¢ and such that " (c) # 0 and there exists m > 0 such that f™(c) = q
is fized and |f'(q)| > 1. Then if {x,}32y is a nonconstant orbit of f with a
positive Lyapunov exponent N(xg) > 0, the orbit exhibits sensitive dependence
on initial conditions.

The proof of this theorem is rather more delicate. Problems arise when the
orbit goes near a critical point. However then some time later it passes near an
expanding fixed point and this forces a nearby orbit to separate. The details of
the proof are given in a forthcoming paper [4].
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Abstract

It is shown how stochastic It6-Taylor schemes for stochastic ordinary
differential equations can be embedded into standard concepts of
consistency, stability and convergence. An appropriate choice of function
spaces and norms, in particular a stochastic generalization of Spijker’s
norm (1968), leads to two-sided estimates for the strong error of
convergence under the usual assumptions.
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1 Introduction

The invention of Ito-Taylor schemes was a major breakthrough in numerical
analysis of stochastic ordinary differential equations (SODEs). We refer to the
pioneering book [7] and the influential monographs [9] and [10].

In this paper we show how the strong convergence theory of these schemes
can be embedded into the standard framework of consistency, stability and
convergence as it is formulated in abstract terms in the theory of discrete
approximations (see [14]). Moreover, by a special choice of norms, namely a
stochastic version of the deterministic Spijker norm (see [12],[13],[6, Ch.IIL8]),
we are able to derive two-sided estimates for the strong convergence error.

While our notion of consistency and (numerical) stability goes back to the
work of F. Stummel [14] there already exist other concepts in the literature.
One can find notions of consistency and local truncation errors in the books
[7, 9, 10]. We refer to [3] for a discussion. Other authors, who have considered
the question of stability, are for instance [2, 4].

*supported by CRC 701 Spectral Analysis and Topological Structures in Mathematics’.
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To be more precise, we deal with the numerical approximation of R%-valued
stochastic processes X, which satisfy an ordinary It6 stochastic differential
equation of the form

dX (t) = bO(t, X (t))dt + Zbk t, X (t))dW*(t), t € [0,T], "
k=1

X(0) = Xo.

We assume that the initial value X, has finite second moment. By W¥,
k = 1,...,m, we denote real and pairwise independent standard Brownian
motions and we also assume that the drift and diffusion coefficient functions
bk 1 [0,T] x RY — R? fulfill the usual global Lipschitz and linear growth
conditions such that (1) has a unique solution [1].

Note that the corresponding integral form of the SODE (1) has the
representation

X(t):Xo—|—/Otb0(s,X(s))ds+i/otbk(s,X(s))de(s), te0,7). (2)
k=1

Ito-Taylor schemes are based on an iterated application of It6’s formula on
the integrands of (2), provided that all appearing integrals and derivatives exist.
Again, we refer to the books [7, 9, 10] for a rigorous derivation.

Let M be the set of all multi-indices o = (j1,...,5), l € N, 5; € {0,...,m},
i=1,...,1. By {(a) € N and n(a) € N we denote the length of « € M and
the number of zeros in o € M respectively. For v € {§ : n € N} consider the
finite set of multi-indices (c.f. [7])

Ay:{aEM:1<€(a)+n(a)<2’yor€(a):n(a):’y+%}.

For a time grid 0 = ¢ty < t; < ... < ty = T with (for simplicity) equidistant
step size h = %, N € N, the Ito-Taylor scheme of order « is given by

X (to) = Xo,

Xn(tr) = Xn(te—1) + Daea, falte—1, Xn(h-1)) ok, k=1, )

with the iterated (stochastic) integrals

/ / / AW (s1) ... dW7 (s1), (4)

where a = (j1,...,j;) and dW?°(s) = ds. For the same « the coefficient function
fo 1 [0,T] x RY — R? is defined by

falt,x) = (L7 - LY f)(t, @), (5)
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where f : [0,7] x R? — R? is the projection with respect to the second
coordinate, i.e. f(t,x) = x, and the L* are differential operators of the form

2
+Z 01 + Z Zbkl kjaxl(?xj
1,7=1 k=1
Zb’w L k=1,.

Example 1 If we choose v = % then the set .A% just consists of all multi-
indices of length 1, i.e. Ay = {(0),(1),...(m)}, and the coefficient functions
fo simplify to the drift and diffusion coefficient functions of the SODE (1), i.e.
foy =" fork=0,...,m. Since Io) k=hand Ij = W (ty) =W (tg_1), the
It6-Taylor scheme of order v = = 1is the well-known FEuler-Maruyama scheme.
One also easily checks that the chozce v =1 leads to the Milstein method.

It is well-known (see for example [7, 9, 10]) that the It6-Taylor scheme of
order v converges at least with order v in the strong sense, i.e. there exists a
constant C' > 0, independent of the step size h, such that

Jmax (E (1 () = X)) < On, ©

where X is the analytic solution to (1) and X}, denotes the numerical solution.
Note that [7, 9, 10] use an even stronger norm, where max occurs inside the
expectation. It is an open problem whether our approach can handle this norm
as well.

In order to embed the It6-Taylor scheme into the discrete approximation
framework, we will write the equations (3) as Ap(Xp) = Rj with a suitable
operator Ay and right-hand side Rjy. We use the norm

IYallo,n = Jmax, IYa(t)l 220, (7)

and the following generalization of Spijker’s norm

IYall -1 = s [Vt 2o ®
Here || - || £2(q) denotes the L?-norm of random variables.

The key to our two-sided error estimate is the following bistability inequality
Crl|An(Yn) = An(Zn) || =10 < [Yn = Znllon < CollAn(Ya) = An(Zn)ll =10~ (9)

In the following section we show how the It6-Taylor scheme fits into the
discrete approximation theory. In Section 3 we give a precise formulation of our
main result together with all assumptions.
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2 Writing It6-Taylor schemes as discrete approximations

In the discrete approximation theory the concepts of consistency, (numerical)
stability and convergence are defined in a very general way. Our notions of
bistability and of the local truncation error are directly related to the abstract
framework invented by F. Stummel [14]. We present the basic ideas behind
Stummel’s theory in this section. Simultaneously we embed the Ito-Taylor
scheme into the framework.

The starting point of the discrete approximation theory is an equation of
the form A(X) =Y. Here, the operator A : E — F'is a mapping between two
sets E and F. For a given Y € F our aim is to find a discrete approximation of
the solution X. To this end we assume the existence of two sequences of metric
spaces (Ep)nez and (F},)per and operators Ay, : Ep, — Fy, h € Z, for some index
set Z. With the help of two sequences of restriction operators 7’,‘? : F— Ej and
r,lj : F — Fp, for h € 7, the discrete spaces Ej, and Fj, are connected to the
original spaces E and F' respectively. Figure 1 visualizes the setting.

Figure 1: Visualisation of the discrete approximation theory

By solving equations of the form A (X)) = 7f'Y we obtain a sequence of
discrete approximations (Xp)nez. Now, the theory of F. Stummel answers the
questions, in which sense and under which conditions the sequence (X, )nez
converges to the solution X. Let us first show how the SODE (1) and the
Ito-Taylor scheme (3) can be embedded into figure 1.

Since the existence of a unique solution X to (1) is guaranteed by our
assumptions we consider the trivial operator

E—F
X A(X)
where E := {X} and F := {Y = (X(,0)} are singletons (with the second

component of Y being the stochastic process which is P-a.s. equal to 0 € R9)
and the operator A is given by

(10)

(X(t) = X(0) = Jyp°(s, X(s))ds — Sy [yb*(s, X<S>>dW’“<S>)ogtg> '
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In order to define the discrete metric spaces we denote the time grid by
Th = {t; =1ih|i=0,..., N}. As our underlying discrete space we consider the
set G, = G(mn, L*(Q, F, P;R?)) of all adapted and L?(f2)-valued grid functions,
that is, for Z;, € Gy, the random variables Z,(t;) are square-integrable and
Fi;,-measurable random variables for all ¢; € 7,. Here (Ft)ie[0,r) denotes the
filtration which is generated by the Wiener processes W*, k= 1,...,m. Now,
we choose the metric spaces Ej, and Fj, to be the vector space G, endowed with
the metric induced by the norm

1Znllo.n = max [1Z4(t:)ll 2o (11)
and the stochastic version of Spijker’s norm
1Znll -1 = max |55 Zn(t3)lli o). (12)

respectively. Note that Fj and Fj are Banach spaces.
Next, define the two sequences of restriction operators

F — Eh (13)
T
MUOX e rPX, [PEX)(t) =X () for t €,
F— Fy X i=0
F . F ) — 0 ’
My Fy [rh Y] (t:) { 0 i=1. N (14)
Finally, for h > 0, we introduce the operator
E F
A, - h = I'n
Xp = Ap(Xp)
by the relationship
[An(Xn)](to) = Xn(to), (15)

[An(X)I(t:) = Xn(ti) = Xn(tio1) = Xpea, faltiot, Xn(tiz1)) oy,

for 1 < ¢ < N. Under the assumption that all It6-Taylor coefficient functions f,
satisfy a linear growth condition, [A}(X})](¢;) is an adapted and mean-square
integrable random variable. Therefore, A;, maps Ej, into F}. See Section 3 for
a complete statement of all assumptions.

Since the It6-Taylor schemes are explicit, the operators A are bijective, i.e.
there exists a unique solution Xh to the equation Ap (Xh) = 7, for all Z;, € F},.
In particular, the Ito-Taylor approximation X} to (1) is equivalently written as
the solution to the equation A, (X)) = rf'Y.

Next, we introduce our notion of consistency, bistability and convergence.
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Definition 1 Consider a one-step method given by a sequence of operators
(An)n. The method is called consistent of order v > 0, if there exists a constant
C > 0 and an upper step size bound h > 0, such that the estimate

[An(ry X) = iy A(X)||-1.p < CR (16)
holds for all grids T, with h < h, where X denotes the analytic solution of (1).

The left hand side of (16) is called local truncation error or consistency error.
Therefore, a one-step method is consistent if the diagram in Figure 1 commutes
up to an error of order v, that is r/ o A~ Aj or¥ for h small enough.

The second ingredient in the convergence theory is the concept of (numerical)
stability. In [14] F. Stummel introduces the stronger notion of bistability and
he proves that bistability of a numerical method can be characterized by the
equicontinuity of the operators (Ap), and (A, ). In this sense the following
definition is a sufficient condition for Stummel’s notion of bistability.

Definition 2 A one-step method defined by operators (Ap)n is_called bistable,
if there exist constants C1,Co > 0 and an upper step size bound h > 0 such that
the operators Ay, are bijective and the estimate

CilAL(Z1) — AL(Zi)|l—1n < 1 Zh — Znllon < CollAn(Zh) — An(Zi)||-1.n
holds for all Zy, Zh € Ey and for grids m, with h < h.

Finally, we define the error of convergence in terms of the norm || - ||o,», the

space E}, and the restriction operators 7“,];3 .

Definition 3 A one-step method is called convergent of order v > 0 if there
exist an upper step size bound h > 0 and a constant C > 0 such that the
corresponding operators Ay, are bijective and

|X4 —rf X0 < Ch (17)

for all h < h. Here X}, denotes the solution to A, (X)) = ry.

3 Main result

In this section we give a precise formulation of the underlying assumptions and
our main result.

(A1) The initial value X, is an Fo-measurable and R%-valued random variable
satisfying E(| Xo|?) < oc.

(A2) For all a € A, there exists a constant L, > 0 such that
[falt;2) = fa(t,y)| < Lol —y| and |fa(t, )| < La(l + |2[)

for all 2,y € R? and t € [0, T].
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(A3) For a given order v the Ito-Taylor expansion of X (¢) with respect to A,
exists for all ¢ € [0, 7.

(A4) For all a € B(A,) we have
T
/O E (|fa(s, X ())[?) ds < oo.

The first two assumptions are used, for example, in [1] to assure the existence
and uniqueness of the solution X on [0,7], such that X(¢) is mean-square
integrable for all ¢t € [0,T]. The assumption (A2) also assures that the operators
Ap, are well-defined and bistable. In (A3) we assume that the Ito-Taylor
expansion exists up to a given order . Assumption (A4) is needed in order
to prove the consistency of the Ito-Taylor schemes. There we use the notation
of the remainder set B(A,) of the Ito-Taylor expansion which is given by

B(Ay) ={a=(ji,j2,....01)) € M = (J2,...,51) € Ay} C M
(c.f. [7]). Now we formulate our main result, which is proven in [8].

Theorem 1 Let the assumptions (A1)-(A4) hold for v € {5 |n € N}. Then
the Ito-Taylor scheme of order vy is

(i) consistent of order v,
(i) bistable with respect to the norms | - |lo.n and || - ||=1,1,
(iii) convergent of order ~.
Moreover, there exists h > 0 such that the two-sided error estimate
Cil|An(ri X) = Y| —in < [IrF X = Xallon < Col|Ap(riy X) = 14 Y || -1n
holds for all grids T, with |h| < h.

Remark 1 Theorem 1 also holds for implicit methods like the stochastic theta
method [3] and for stochastic multi-step methods [8].

Remark 2 The two-sided error estimate in Theorem 1 can be used to discuss
the optimal order of convergence of the Ité- Taylor methods. J. M. C. Clark and
R. J. Cameron [5] constructed the example

x0=(p x0)4(wa(h) ¥0=(0): .

to show that, in general, the maximum order of convergence is equal to % if the

numerical method, like the FEuler-Maruyama scheme, uses only the increments
Wk(t;) — WFE(ti_1) of the driving Wiener processes. For this example the local

trunction error of the Euler-Maruyama is exactly computed to be 4/ %Th. Hence,

the strong error of convergence is bounded from below by a term of order v = %
A suitable generalization of this example gives corresponding results for the
higher order schemes [8].
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Abstract

In this paper we study in detail the pullback and forwards attractions
to non-autonomous competition Lotka-Volterra system. In particular,
under some conditions on the parameters, we prove the existence of a
unique non-degenerate global solution for these models, which attracts
any other complete bounded trajectory. For that we present the
sub-supertrajectory tool as a generalization of the now classical sub-
supersolution method.

Key words: Sub-supertrajectory method, Lotka-Volterra competition system,
attracting complete trajectories.
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1 Introduction

In this paper we collect some results from [6] and [7] to analyze the asymptotic
dynamics of the following non-autonomous Lotka-Volterra competition model

ur — Au = u(Nt,x) —a(t,x)u — b(t,z)v) € Q, t>s
v — Av =ov(pu(t,x) — c(t,x)u —d(t,z)v) x€Q, t>s
u=v=0 €I, t>s
u(s) = us, v(s) = vs.

(1)
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Here, u and v represent the population densities of two species within a habitat
2, a bounded and smooth domain in R, N > 1, which compete in the habitat.
A, i are the growth rates of the species, b, ¢ are the interaction rates between the
species, a, d describe the limiting effects of crowding in each population. We are
assuming that €2 is fully surrounded by inhospitable areas, since the population
densities are subject to homogeneous Dirichlet boundary conditions. us, vs are
regular and positive functions which implies that the solution of (1) satisfies
u,v > 0.

In this work we are interested in determining the asymptotic behaviour of
solutions of the system (1). This is a very complicated task, and only partial
results are known. For example in the autonomous case (all the coefficients in
(1) are constants) and denoting by Ao the principal eigenvalue associated to —A,
then if A or u < Ay, then one of the two species (or both of them) will be driven
to extinction. However, there exist two increasing maps F,G : [Ag,00) — R
such that if

A>G(p) and p> F(N),

then (1) is permanent and moreover there exists a positive equilibrium solution
(see Cantrell et al. [2] and Lopez-Gomez [9]).

When non-autonomous terms are allowed in the equations, this is usually
done under the assumption of periodicity, quasiperiodicity or almost periodicity,
and in this case similar results can be obtained to those for autonomous
equations (see Hess [4], Hetzer and Shen [5] and references there in).

Cantrell and Cosner [1] assume general non-autonomous terms that are
bounded by periodic functions, and using a comparison method give conditions
on A and p that guarantee that (1) is permanent.

In [6] we show that, under a smallness condition on the coupling coefficients
be, if there exists a bounded and bounded away from zero complete trajectories
of (1), it is the unique such trajectory, and it also describes the unique pullback
and forwards attracting for (1), i.e. (u*,v*) is a bounded trajectory such that,
for any s € R and for any positive solution (u(t,s),v(t,s)) of (1) defined for
t > s, one has

(u(t,s) —u*(t),v(t,s) —v*(t)) — (0,0) as t— o0, or §— —oo. (2)

In this work (see [7]) we show that this trajectory really exists. To this
end we introduce the sub-supertrajectory method as a tool to get existence of
intermediate complete trajectories associated to (1). Note that our construction
is independent of whether or not (1) has monotonicity properties. Note also
that the usual way in previous works (for instance [6], [11]) to get existence
of complete trajectories associated to a particular system is by means of the
pullback attractor. The sub-supertrajectory method adopts a different and, in
this case, more fruitful strategy. Moreover, we also get the existence of minimal
and maximal global bounded trajectories associated to ordered systems.

In Section 2 we present the sub-supertrajectory tool, Section 3 is devoted
to the logistic equation which appears when one species is absent. Finally, in
Section 4 we show the results of system (1).
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2 The sub-supertrajectory method for complete solutions
Consider the general problem

uy — Au = f(t,x,u,v) x€Q, t>s
ve — Av = g(t,z,u,v) x€Q, t>s
u=v=0 r€eEI, t>s
u(s) = us, v(s) = vs,

(3)

where f, g are bounded on bounded sets of R x Q x R? and are locally Holder
continuous in time. We denote the solutions of (3) as

u(t, s;us,vs), v(t,s;us,vs), fort>s.

Definition 1 A pair of functions (u,v) € C;f(]R x Q) is a complete trajectory
of (3), if for all s <t in R, (u(t),v(t)) is the solution of (3) with initial data
us = u(s), vs = v(s).

Definition 2 A positive function u(t,z) is non—degenerate at co (respectively
—o0) if there exists to € R such that u is defined in [tg,00) (respectively
(—o0,t0]) and there exists a CL(Q) function po(z) > 0 in Q, such that for
all x € Q, u(t,x) > @o(x) for all t > to (respectively for all t < tg).

The use of sub-supertrajectory pairs to construct complete solutions can be
found in Chueshov [3] or Langa and Suarez [8]. Both references use monotonicity
properties of the equations, see Corollaries 2 and 3 below. In particular this
applies to scalar equations. Here we use similar ideas to construct bounded
complete trajectories, without such monotonicity assumptions.

Given Ty < oo and two functions w,z € C((—o0,Tp) x Q) with w < z we
denote

[w, 2] == {u € C((—00,Tp) x Q) 1w < u < 2}

Now we introduce the concept of complete sub-supertrajectory pair.

Definition 3 Let Ty < oo and (u,v), (u,0) € X = Ctl’f((—oo,To) x Q). We
say that (u,v) — (u,v) is a complete sub-supertrajectory pair of (3) if

1. u(t) <a(t) and v(t) <o(t) in Q, for all t < Tp.
2. u<0<Tuwandv <0<7T on I, for all t < Tj.
3. Forallz e Q,t<Ty

ﬂt _Aﬂ_f(tvxvﬂvv)

u — Au — f(t,z,w,v), Y€ [v,7),
vy — Av —g(t, z,u,v) vy — AV —

0<
<0< g(t,x,u,v), Vu € [u,ul.

Note that the concept of a sub-supersolution pair, defined for ¢ > s, has

been widely used and developed, see e.g. Pao [10], to construct solutions for

the initial value problem (3). The main result of this section is:
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Theorem 1 Assume that there exists a complete sub-supertrajectory pair of
(8), (u,v) — (u,v), in the sense of Definition 8. Moreover, assume w, v, U and
v are bounded at —oo. Then, there exists a complete trajectory (u*,v*) € X of
(3) such that

(u*,v*) € T := [u,T] X [v,7].

When f and g have some monotonicity properties, we can go further:

Corollary 2 Under the assumptions of Theorem 1, assume moreover that f is
increasing in v and g in w. Then, there exist two complete trajectories (u., vy )
and (u*,v*) of (3) with (u.,v.), (u*,v*) € T := [u,u] X [v,7] such that they
are minimal and mazimal in Z in the following sense: for any other complete
trajectory (u,v) € T we have:

u(t) < ua(t) < u(t) <w(t) <a(t),
t

v(t) < v () < ut) < v*(t) < B(), for all t < Ty. (4)

Corollary 3 Under the assumptions of Theorem 1, assume moreover that f is
decreasing in v and g in u. Then, there exist two complete trajectories (us,v™)
and (u*,v.) of (3) with (us,v*),(u*,v.) € T := [u, 7] X [v,7] and such that
they are minimal-maximal and mazimal-minimal in the following sense: for
any other complete trajectory (u,v) € T we have:

u(t) < u(t) < u*(t)

<
(t) < va(t) < 0(t) < v* (1) for all t < T. (5)

IN A
2|
=

3 The non-autonomous logistic equation

Note that (1) always admits semi-trivial trajectories of the form (u,0) or (0,v).
In this case, when one species is not present, the other one satisfies the logistic
equation
—Au=h(t,z)u—g(t,x)u? inQ, t>s
u=0 on 09, (6)
u(s) =us >0 in €.

It is well known that if
hy :=suph(t,z) < oo and gz :=infg(t,x) >0, (7)
Q Q
then, for every non-trivial us € C(Q), us > 0, there exists a unique positive

solution of (6) denoted by O, g1(t, 53 us).
On the other hand, for m € L*>(€Q) we denote by A(m), the first eigenvalue of

—Au =X u+m(z)u in, w=0 on Q.

In particular, we denote by Ay := A(0). It is well known that A(m) is a
simple eigenvalue with a positive eigenfunction, and a continuous and decreasing
function of m.
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Finally, for h,g € L>(Q) with g := inf{g(x), = € Q} > 0 consider the
elliptic equation

—Au = h(z)u — g(x)u? in Q,
{ u=0 ’ on ON. (8)

It is well known that (8) possesses a unique positive solution if, and only if,
A(h) < 0, which we denote by wy, g)().

In the following result (see [12], [11] and [7] for a complete study of (6)) we
show the existence and properties of a complete nonnegative trajectory for (6).
For this we will assume henceforth that h(t,z) and g(¢, x) satisfy (7) and there
exist bounded functions hZ (z) and H () defined in Q such that

lim sup sup (h(t, x) — Hgt(x)) <0, O0<liminf inf (h(t,x) - hat(x)) 9)
t—+oo ze0 t—too zeQ

Proposition 4 Assume (7) and (9). Then:

i) There exists a maximal bounded complete trajectory, denoted by @, 5(t), of

(6), in the sense that, for any other non-negative complete bounded trajectory

&(t) of (6) we have
0< S(t) < go[h,g](t), t € R.

Moreover, if @i g(t,7) is nondegenerate at —oo then it is the only one of
such solutions.
i) If A(Hy') > 0, then @, g(t) = 0 for all t € R. Therefore all non-negative
solutions of (6) converge to 0, uniformly in Q, in the pullback sense.
i) If A(hg ') <0 then @y, g is the unique complete bounded and non-degenerate
trajectory at —oo of (6), and for t in compact sets of R, if s — us > 0 is
bounded and non-degenerate, then

Orn,g)(t, 8;Us) — @ing(t) — 0 as s — —oo uniformly in Q.

w) If A(HS) > 0, then for all us € C(Q), us > 0, the positive solution of
(6) satisfies Oy, g(t,s;us) — 0 uniformly in Q as t — oo. In particular,
Plh,g)(t) — 0 uniformly in Q as t — oo.

v) If A(hg) < 0 and Plh,g) 7 0, then @y g is non-degenerate at oo and for any
s and any non-trivial initial data us > 0,

Otn,g)(t, 83Us) — Qng(t) — 0 in Cl(ﬁ) as t — oo.

4 Applications to the Lotka-Volterra competition model

We assume from now on that A\, u € R and
CLL,dL,bL,CL > 0. (10)

We will assume that there exist quantities af,[ < a§, bIi < b§, cf,[ < c§ and
df < d% such that

+< < qE + - < pE
O<aj]E 7a(t,x)7aj§, 0<b§[7b(t,x)7bs£ 1)
0<cy <clt,r) <cg, 0<dy <d(t,z)<djg,
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for all x € Q and for all ¢t > ¢y or t < ty. In the following result we show the
existence of a complete trajectory of (1).

Proposition 5 (Competitive case) There exists a complete trajectory
(u*,v*) of (1) with

P—bgpa.al (L) S U () < opna)(t), Plu—rcop.ad(t) S V() < @pqt), teR.
Moreover, if (11) is satisfied for very negative t and
A> A(—bgw[u,d;]) and > A(_ng[x,a,‘])ﬂ (12)

then (u*,v*) is non-degenerate at —oo.
If moreover (11) is satisfied for large and very negative t, (12) and

A > A(—bgw[u,dﬂ) and [ > A(—cgfw[)\,a?]) (13)
holds, then (u*,v*) is non-degenerate at co.

Proof. Note that in this case f is decreasing in v and ¢ in u. It is enough
to take

(ﬂa ﬂ) = (@[Afbgo[u’dha]a (p[)\,a]) and (Qa E) = ((p[ufcga[,\,ahd]v @[u,d])'

Moreover, if A\ and p satisfy (12), resp. (13), then by Proposition 6 we obtain
that v and v are non-degenerate at —oo, resp. +oo. O

Now, we can summarize the results for the system (1).
Theorem 6 (Competitive case)

1. If X< Ap and < Ag

lim (u(t, s;us, vs), v(t, $;us,vs)) = lim (u(t, s;us, vs), v(t, s;us,vs)) = (0,0).

§——00 t—o0

2. If X\ < Ay and p > Ay, then

lim wu(t, s;us,vs) = 0,

t—o0

and for every monnegative nontrivial vs we have

lim (v(t, 83 Us, Vs) — Oryq(t, s;f)s)) = tlggo (v(t, 83 Usy Vs) = Plu,d] (t)) =0.

t—o0

3. If X>Ap and p < Ay , then

lim v(t, s;us,vs) =0,

t—o0

and for every monnegative nontrivial U5 we have

lim (u(t, 53U, Us) — O (L, s;ﬁs)) = tlim (u(t, 53 Us, Vs) = P[x,a] (t)) =0.

t—o0
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4. 1f
A > A(—bgw[%d;]) and > A(—cgw[k’a”), (14)

there exists a complete bounded non-degenerate at —oo trajectory of (1)
(u*(t),v*(t)). Moreover, if b or ¢ are small at —oo, that is,

lim sup [|b]| Lo () lim sup [|¢|| Lo () < po
t——o0 t——o0

for some suitable constant py > 0, then this is the unique bounded non-
degenerate at —oo trajectory of (1) and it is pullback attracting, that is

lim (u(t, s;us,vs) —u™(s),v(t, s;us,vs) —v*(s)) = (0,0).

If moreover
A > A(_bgw[#,dﬂ) and > A(—c:gw[)\?a;]), (15)

then (u(t, s;us, vs), v(t, $;us,vs)) is non-degenerate at co. If additionally
b or ¢ are small at co, that is,

lim sup ||b]| (o) limsup [|¢|| L (a) < po
t—o0 t—o0

for some suitable constant py > 0, then all solutions of (1) have the same
asymptotic behavior as t — oco. If (14) is also satisfied, then (u*(t),v*(t))
is non-degenerate at oo and it is also forwards attracting, that is,

tlim (u(t, s;us,vs) —u*(t),v(t, s;us, vs) — v*(t)) = (0,0).

—00

Remark 1 Similar results can be presented for the prey-predator and symbiosis
cases.

In Figure 1 we describe the asymptotic dynamical regimes (pullback -Case
a)- and forwards -Case b)) when A and p are constant functions. Region A:
extinction of both species; Regions B and C: stability of semitrivial complete
trajectories; Regions Dp and Dp: permanence regions (existence of global non-
degenerate global solutions). The limiting curves are given in (14) and (15).
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Abstract

The focus of interest is the existence of strong solutions to stochastic
functional differential equations which are not restricted to pathwise
dependencies. Indeed, the evolution of the wanted random process may
be prescribed by its current features being nonlocal with respect to
the probability space — like the expected value and second moments.
This result is concluded from Cauchy-Lipschitz Theorem for mutational
equations (a form of generalized ODEs beyond vector spaces) and a new
aspect of weakening their a priori requirements.

Key words:  Mutational equations, differential equations beyond metric spaces,
dynamical systems with feedback, stochastic functional differential equations.
AMS subject classifications: 60H10, 34A12, 34G99, 54H20, 54E50.

1 Introduction

Let (2, A, (A;)i>0, P) be a complete probability space with a filtration (A;)¢>0
satisfying the usual conditions (i.e. it is right continuous and Ay contains all
P null sets in A). W = (Wi)¢>0 is a Wiener process on (€, A, (A¢)i>0, P). Set

Eq = {(t,X) | t>0, X:Q— R is A-measurable, E(|X[?) < oo }.
W12°(R) denotes the Sobolev space of bounded Lebesgue measurable functions
R — R whose weak derivative is also represented by a function in L>°(R). The
main result about stochastic differential equations (SDEs) states:

Theorem 1  Suppose f = (f1, f2) : Ea — WHP(R) x WE(R) to satisfy

(Z) Sup(t,Y)EEA ||f(ta Y)||W1<>Q(R) < o0,
(79) for each R > 0, there are Lr > 0 and a modulus of continuity wr(-)
such that for all (t;,Y;) € E4 with |t;| + E(]Y:|?) < R,

(01, %1) = (2, Y2) |3 ey < L - B([Ys = Yaf2) + wh(lty — tal).

Then for each initial (0,Xo) € E4 and T €]0,00[, there exists a unique curve

99
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[0,T] — E4, t+— (t, Xy) with (X;)o<i<r being a strong solution of
dXt(UJ) = fl (t, Xt) (Xt(UJ)) dt + f2 (t,Xt) (Xt(UJ)) th(UJ)

This type of initial value problem differs from what is usually investigated as a
“stochastic functional differential equation” (as e.g. in [3, 7]) because its right-
hand side can depend on nonlocal features of X; : Q@ — R (instead of the more
popular pathwise dependence). Indeed, the example
dXi(w) = g1(t, E(Xe), E(1Xe]?)) - (92(t) + g3(Xe(w))) dt +
ha(t, B(X0), E(XA[2) - (a(t) + ha(X0(w))) dWi(w)

with bounded and Lipschitz functions g1, k1 : R® — R, g2, 93, ho,hz : R — R
fulfils these assumptions (with f1(t,Y) := g1 (¢, E(Y), E(|Y[?)) - (92(t)+g5(-))).

Theorem 1 can be easily extended to systems and finds its applications e.g.
in dynamic cooperative games (with lacking or uncertain information about
others). Moreover, it can be verified for Lipschitz coefficients of uniformly linear

growth via ||a; — as]| := supg 4t instead of llar — az|| o (®) (asin [6, § 3.5]).

It results from the Cauchy-Lipschitz Theorem for mutational equations.
Aubin introduced them for generalizing ordinary differential equations to metric
spaces without linear structure [1, 2]. By means of conceptual extensions even
beyond metric spaces, the author investigated such SDEs with additive noise
in [6, § 3.5]. A very brief survey of the general theory is given in § 2 below.
Now a new analytical trick (presented here in § 3, Proposition 4) enables us to
weaken the a priori requirements for mutational equations and thus, it makes
the restriction to additive noise redundant. In a word, the proof of Theorem 1
consists in the general Theorem 3 with Remark 2 below, the rather technical
Proposition 4 and the particular preparations in Example 1.

2 Mutational equations beyond metric spaces: A survey

The main goal of mutational equations is to extend ordinary differential
equations beyond vector spaces. As any linear structure is lacking, we still rely
on the notion of first-order approximation, but use now a class of homotopies
(instead of affine-linear maps) for comparing. The first essential questions focus
on the distance functions and the additional properties of the homotopies which
are to guarantee that Euler method provides solutions to initial value problems.

In [6, Ch. 3|, mutational equations are presented beyond (pseudo-) metric
spaces for the first time. The distance functions d, e are assumed to satisfy some
conditions of continuity instead of the triangle inequality. Here we summarize
some of the main results for a special case of distance functions and, all the
proofs are given in [6, §§ 3.1 — 3.4].

General assumptions and notations for § 2.

(H1) E#0isaset and, d,e: E x E — [0,00[ are reflexive and symmetric.
|-] : E — [0, 00[ is sequentially lower semicontinuous w.r.t. d.
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(H2) There exist a metric mg : E x E — [0,00[ on E and positive constants
01702703504) p)qWIth Cl mg S d S OQ'mgv 03m8 S € S O4m8
such that d is continuous and e lower semicontinuous w.r.t. mg.

(H3) A set O(E,d,e,[-]) # 0 of so-called transitions [0,1] x E — E on
the tuple (E,d, e, [-]) is given, i.e. by definition, each ¥ € ©(E,d, e, |-])
satisfies
1.) foreveryx € E: 9(0,2) =
2.) I nondecreasing «(¥; -) : [0,00[ — [0, 00[: for any z,y € E (=], ly] <r),

lim sup dw(h’z)’ﬂ(};’y)) = d(z.y) < a(¥;r) - d(z,y)
h10

3.) 3 nondecreasing 3(9; ) : [0,00[ — [0, 00[: for any s,t€[0,1], = ([z]<r),
e(9(s,2), 9(t,x)) < B(;r) - |t — s]

4.) F~() € [0, 00l : W(t2)] < (lz] + ) t) - @t foranyt, z,

(H4) D:0O(E.de, [-])xO(E,d,e,|[-])x[0,00[— [0, ool fulfils for each r > 0

1.) D(-, -; r) is reflexive and symmetric,
2.) D(-, -; r) is sequentially continuous w.r.t. {D(-,-; R)| R > 0},
3.) D(9, 1; -) is nondecreasing for any 9, 7,
4.) limsup d(9(t1+h.2), T(t2thy)) *hd<ﬂ<t1,w>,T<tz7y>>-ea<”’”'h <
hlo
D(9,7; R)

for any 0,7 € O(E,de,|-]), z,y € E, t1,t € [0,1] with
lz], ly] <7 and R:= (r + max{y(9),~(7)}) - emax{y(9),7(7)}
Both the parameter a and the “distance” D between transitions are based on

local information (w.r.t. time tending to 0), but they lay the basis for estimating
the distance between two points evolving along two transitions — via Gronwall.

Proposition 2 ([6, Proposition 3.7])  Let 9,7 € @(E,d,e, LJ), r >0 and
t1,ta € (0,1] be arbitrary. For any x,y € E suppose |xz] <r, |y] <r and set
R = (r+max{’y(19), 7(7)}) . emax{y(9), v(1)} « .

Then the following estimate holds for each h € [0, 1] with max{t;+h, to+h} <1

d(ﬁ(h—i—h,x), T(tQ"’h,y)) < (d('ﬂ(tl,gj), T(tg,y)) +hD(19’7-7R)) e(TsR) b

The so-called mutation of a curve z(-) : [0,7] — FE is the counterpart of the
time derivative and, its definition reflects the notion of first-order approximation
(for h | 0) in connection with the preceding structural inequality.

Definition 1 Consider a curve x(-) : [0,T] — E with sup |z(-)| < co. The
so-called mutation of x(-) at time t € [0, T is defined as
I(t) = {19 €O(E,de, | ]) ‘ for each R > sup |x(+)|, there is ar > 0 s.t.
forallT € ©(E,d,e,|-]), y€ E, s€0,1] with |7(-,y)] <R:
T , 7(s , — d(z(t), (s, Ce*Rh
A, rleh) - G0, e oy o )},

lim sup
)
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Remark 1 If the set E has a separate real component indicating the respective
time (as in Example 1 about SDEs below), then we can restrict all quantitative
comparisons to “simultaneous” states 7(s,y), x(t) € E. The resulting set of
approzimating transitions does not have to be identical to the mutation in Def. 1,
but the relevant conclusions (in proofs of existence etc.) do not change [6, § 3.4].

Definition 2 Let a function f : E x [0,T] — ©(E,d,e,|]) be given.
A curve z(-) : [0,T] — FE is called a solution to the mutational equation
;%() > f(z(),-) in (E,d,e, ||, D) if it satisfies:

1.)  x(-) is continuous with respect to e and bounded with respect to ||,

2.)  for Lebesgue-almost every t € [0,T[: f(z(t),t) € x(t),

These terms do not use any linear structure explicitly and, they enable us to
formulate the initial value problem for mutational equations. In particular,
Peano’s Theorem about existence of solutions (due to continuity and suitable
compactness) has an analogue [6, § 3.3.3]. In regard to the SDEs, we present the
counterpart of Cauchy-Lipschitz Theorem [6, Theorem 3.31] and the conclusion
about uniqueness in [6, Proposition 3.11].

Definition 3 ([6, Definition 3.16]) For any initial element x¢ € E, time T €
10, 00[ and bounds @,3,7 > 0, let N N(zo,T,@,3,7) denote the (possibly
empty) subset of all “Euler curves” y(-) : [0,T] — E constructed in the
following piecewise way: Choosing any equidistant partition 0 = tg < t; <
=T of [0,T] (withn >T) and V1 ...9, 6@(Ede [-]) with
sup, ¥ (9x)
supy, a(Up; (lzo) +77T) e7T)
supy, B(9x; (lzo] +7T) e 7)
define y(+) : [0,T) — E as y(0) := xo and
y(t) = U (t —tr—1, y(tkfl)) for t e ]tkfl,tk], k=1,2,...,n
It is related to piecewise constant O(-) : [0,T] — O(E,d,e,|-|) defined as
19(t) = 19]‘ fort e [tjfl,tj[ (] =1... TL)
The tuple (E,d,e,|-|,©) is called Euler equi-continuous if for any xy € E,
T €]0, ], a, Bﬁ > 0, there exists a constant L € [0,00[ such that every curve
y(-) € N(wo, T, a, E, ) is L-Lipschitz continuous with respect to e.

IA A IA
w2

Theorem 3 (Extended Cauchy-Lipschitz Theorem, [6, § 3.3.7]) Suppose
the metric space (E, mg) to be complete and the tuple (E, d,e,|], @(E, d,e, H))
to be Euler equi-continuous. For f : E x [0,T] — @(E, d, e, H) assume

(1.) For each R > 0,
@\(R) = sup, , a(f(z,t); R) < oo,
ﬂ(R) = supz,t 6(f($,t) R) < o0,

~

Y = Supw,t A/(f(x7t)) < 00,
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(2.) [ is Lipschitz continuous w.r.t. state in the following sense: for each r >0,
there exist constants A, ;> 0 and a modulus of continuity w(-) such that
§:ExE—[0,00[ (z,y) — inf {d(z,2) +p-e(z,y) | 2€E, 2] <r}
satisfies D(f(z,s), f(y,t);r) < A-6(z,y) + w(]t —s])

whenever (z,s), (y,t) € E x [0,T] fulfil max{|z], [y]} <.

Then for every initial element xo € E, there exists a solution x(-) : [0,T] — E
to the mutational equation T(-) 3 f(z(), +) with z(0) = x.
Any other solution y(-) to this initial value problem satisfies &(xz(-),y(-)) = 0.

Remark 2 In the special case of square-integrable random variables on R, we

prefer the square deviation for d = e to the L? norm (see details in Example 1

below). Then it is sufficient to make the Lipschitz assumption w.r.t. E(|- — - |?)

instead of the auziliary distance § because for all square-integrable XY, Z,
E(X - Z?)+E(Z -YP) > E(X - Y]?).

3 The new aspect of weakening a priori assumptions

The definition of transition in (H3) implies the restriction that the initial dis-
tance between two points may grow (at most) exponentially while evolving along
the same transition ¥, i.e. for any x,y € F and h € [0, 1],

d((h,z), I(h,y)) < d(z,y) - e*"
with a constant o € [0,00[ depending on ¥ and max{|z], |y]} < co. The key
goal of this section is some way out if the candidates for transitions only satisfy
d(@W(h,z), I(h,y)) < C -d(z,y) - e*h

with a constant C' > 1. In a very broad sense, we apply the same notion as
for the step from Hille-Yosida Theorem (about contractive C° semigroups) to
the Theorem of Feller, Miyadera and Phillips (about arbitrary C° semigroups)
(see e.g. [4, Theorem II.3.8]). Indeed, we introduce a suitable auxiliary distance

d being “equivalent” to d, but beyond vector spaces now, there is no linear re-
solvent operator available as in the standard proof of the Theorem of Feller et al.

General assumptions and notations for § 3.
(A1) O(E,d,e,|-])is anonempty set of functions 9 : [0, 1]x F — FE satisfying
(1.) foreveryz € E: 9(0,z) ==z

(3.) there is 5(1J;-) : [0, co[— [0, 0] such that for any s,t€[0,1], z€ E
with [z] <r:  e(d(s,2), I, z) < BWr) - |t — s

(4.) there isy € [0, 00[ (not depending on 99) such that for any ¢ € [0,1]
andz € E W(t2)] < (lz] +71¢) -t

Moreover, a parameter function a : O(FE,d,e, |-]) x [0,00] — [0, 00|
is nondecreasing w.r.t. its second argument. (Its purpose is clarified in
(A4) below.)
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(A2) For any initial element zo € E, time T €]0,00] and bounds @, > 0,
N = N(zo, T,Q, B, ~) consists of all “Euler curves” related to functions
in O(E,d, e, |-]) as in Definition 3 (but with the global bound 7 instead
of v(Vx)).

(A3) D:O(E,d,e,|-])xO(E,de,|-])x[0,00] — [0,00[ satisfies (H4) (1)—
(3).

(A4) There is a nondecreasing function C : [0, 0o[ — |0, 00| satisfying:
Choose the bounds a, B, R, T > 0 and initial points xg, yo € E arbitrarily
with max{|zo],|v0]} < R and set p(t) := (R + ~t) e7*. Then
any curves z(-) € N(wo, T, a,ﬁ,ﬁ), y(-) € N(yo, T, a,Bﬁ) and the
related piecewise constant functions 9,7 : [0, 7] — O(E, d,e, |-|) (as in
Definition 3) fulfil

d(@(1), y(1)) < (C(0) -d(wo,p0) +

T
C@)- [ D), 7(6); o)) - 7 ds) - oD

¢
with the abbreviation &,(t) = / a(T(s); p(s)) ds.
0

In comparison with the summary in § 2, the essential new aspect is specified in
assumption (A4). Indeed, the details about «(¥; ) and D(-, -; ) are now reduced
and, we assume the structural inequality (of Prop. 2) with three modifications:

(i) the initial error is now multiplied by a constant C'(0) (possibly > 1),
(ii) we suppose this modified inequality for all “Euler curves” related to
piecewise constant curves in O(F, d, e, |-]) in a finite time interval [0, 77,
(iii) there is an additional factor e~%(*) in the integral — for technical reasons,
but this is no severe restriction because we can usually adapt C(T).

As T > 0 is arbitrary, restrictions imply immediately that the estimate in (A4)
holds at even every point of time in [0, 7.

Example 1 Let (Q, A, P) be a probability space. W = (Wy)i>0 is a Wiener
process and, (A¢)i>o0 denotes an increasing family of sub-o—algebras of A such
that for all 0 < s < t, Wy is A;-measurable with E(W; — Wy | As) = 0,
E(W,|Ag) = 0 almost surely.

Consider the stochastic differential equation dX; = a(Xy) dt + b(X:) dWy
with A-Lipschitz continuous coefficients a,b : R — R. Then for every initial
Ag—measurable Xg : Q — R with E(|X0|2) < 00, there exists a pathwise unique
strong solution (Xy)o<¢<7 on [0,T] with supy< ;<1 E(|X[?) < oo.
Moreover, at every time t € [0,T], it fulfils following estimates with constants
C1, Cy, Cs depending only on |a(0)],]6(0), A

E(|X¢)?) < (E(|Xol?) +Cat) et
E(|Xt — X0|2) < (s (]. + T) (E(|X0|2) + ].) eCrt .t
[5, Theorems 4.5.3, 4.5.4]. This observation lays the foundations for choosing
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these strong solutions (parametrized by the two A-Lipschitz coefficients a,b) as
candidates for transitions. The aspect of suitable A;-measurability motivates us
to take time t as additional real component into consideration (asin [6, § 3.5.3]):
Eq:={(tX) ‘ t>0, X:Q—R is A—measurable, E(|X|?) < oo},
de:  EaxEgq—[0,00 ((s,X), (t,Y))— |t —s|+E(X —Y|?)
o Ba— [0,00], (t.X) — 1 +E(XP),
Vap:  [0,1] x Eq4 — Eo, (h, (to,Y0)) ¥ (to + hy, Xig4n)
with (Xt)t>t, denoting here the strong solution of d Xy = a(Xy) dt+b(X;) dW
and Xi, =Yy. BEuler equi-continuity is ensured (due to [5, § 4.5]).
In regard to assumption (A}), we consider two nonautonomous stochastic
differential equations whose coefficients Ei,gi [0, T] xR — R (i = 1,2)
are piecewise constant w.r.t. time and A-Lipschitz continuous w.r.t. the second
argument. Then the corresponding strong solutions X, X @) are known to
exist pathwise uniquely [5, § 4.5] and, they satisfy

E(Xf - X{7P) <
Cs (1+T) T, v(1) _ v(2))2
s e BE(IX; — X P) +

T _ ~
+Cy (1+T)./O (Hal(s,.) — as(s Hsup-i- Hbl(s,- — b2 HSUp) ds)

due to Gronwall’s inequality (see the proof of [5, Theorem 4.5.6, page 139 f.]).
The suitable choice of scaling factors implies assumption (A4).

Now we bridge the gap between functions in ©(E,d,e, |-]) and transitions (in
the sense of hypothesis (H3) in § 2) by means of an auxiliary distance function.
Additionally, a further real component is introduced for technical reasons. It is
just to record properly to which “ball” {|-| < r} C E we have to refer for «, D.
(Indeed, the tuple (x,p) € E x [0,00][ is related to {|-] < p-e”}. This separate
exponential factor is just to facilitate updating the radius along transitions.)

~

Proposition 4 Consider E := {(z,p) € ExR| [z] <p-e’} C Ex|0,00]
with E — E, x — (x, |z]) and 7 : E — [0, 00], (z p) p. Moreover
define the extensions of d(-,-), e(-,+), |-] and each ¥ € (E e |]) a

d: @Xf? — [0,00[,  ((z1,p1), (w2,p2)) = d(z:1 )

e: ExE — 0,00, ((z1,p1), (z2,p2)) — e(z1,22),

[ B — ool (5.0) — Lo},

0:[0,1]x E — E, (a( ))'_’(( ), p+7h)

There exist some T > 1 and a function d:ExE—s [0,00] satisfying for
any 9,7 € O(E,d,e, |-]), Z,§ € E, t1,ta,h >0 with t1 + h,ta + h < 1 and the
abbreviation p; = (max{ﬂg T, my}+ 3) . emax{m &, m2 J} + 7
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(1)
(2.)
(3.)

Uy [y X

(
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) < d(,) < C(0) - (),

(9(t1+h,B), Ita+h,7)) < d(0(t1,7), I(ta,7)) - b AT
(V(t1+h,T), T(t2+h,7))

(A(0(t1,2), 7(t2,9)) + - C(T) D@, 73p1)) - " O Fatmon),

In particular, each function ¥ € O(E,d,e, |-]) induces a unique transition on
the tuple (E,d,e, |-|) in the sense of hypothesis (HS) in § 2.

~

Proof. Fix some 7' > 1 with C(0) e=T=Y < L and set d:ExE—[0,00
d(Zo, o)

sup { e~ (a(@ (1), 7

(3.)

U‘;/ o'

p(s)) - e %) ds)

[
S~—
S—
D
|
Q¢
s
=
|
U

tel0,7), &3>0,
Z(-) € N(Zo, t, @,f,7) related to piecewise constant 9(-) : [0,1] — ©,
7(-) € N(o, t, @,B3,7) related to piecewise constant 7(-) : [0,1] — ©,
p(t) = (max{ms o, 7o o)+ ¢) - emeins Eomain) +57

t/
G, (t') = / a(r(s); p(s)) ds for each ¥ € [0,1]

0

o~

d
<

(Zo,Yo) > d(To, Yo) is obvious for all Ty, 7o € E (due to the option t = 0).

C'(0) - d(-,-) < oo results directly from assumption (A4).

This claim is a special case of statement (3.) because D(-, -; p) is assumed

e reflexive in hypothesis (A3).

Choose any ¥, 70 € O(E,d,e,|-|), 0,50 € E, t1,to,h > 0 with

ti+h <1,t3+h <1 and for s > —h, define the abbreviation

p(S) b (InaX{ﬂ'z ﬁo(fl,fo), T2 T()(tz, :7/\0)} + a : (S + h))
. emax{ﬂg Do (t1,Z0), 72 To(t2,90)} +7 - (s+h) .

In regard to an upper bound of c?(ﬁo(tl—i—h,’x\o), To(t2a+h, o)), let t € [0,T7,
@,3 > 0 be arbitrary with a(to;p1) < @ (without loss of generality) and
select any two “Euler curves” Z(-) € N (Jo(t1 + h,2),t, &,Bﬁ), () €
N (7o(t2+h,9),t, a, B, 7) related to piecewise constant functions 9(:),7(-) :
[0,t] — O respectively.

Extend Z(-),y(-) and 9(-), 7(-) t

[—h, t] according to Z(-) := Jo(t1+h + -, Zo),

0
y(-) == 7o(ta+h+ -,%0) and I(-) := Yo, 7(-) := 70 in [~h,0[. Then,
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d(z(t),y(t)) - e~ ® - C(T / D(9,7;p) e” | ds

< eh a(To;p1) (d(’x\(t)’:/y\(t)) e fih a(t; p)ds / D 19 T P) - nalTip) dr ds

+
+C(T) / D, 7;p) e [ alr;p) dr ds)
—h

and if we now assume ¢t + h < T in addition,

0

< chetmn (-, G o [ D), 7(s);pls)) - 1 ds)

< ehalroin) (d(q?o(tl, 0), 7o(t2,50)) e + C(T) h - D(ﬁoﬁo;m))-
( <

Ift+h>T (ie. O
assumption (A4

e (d(f( ), y(t)) e — (T / D o(s)) - e~ @) ds)
< et C(0)-d(2(0), §(0)) < 3 -d( 190(t1+h xo) To(t2+h 7))

and so, this case is not relevant for estimating d(ﬂo(tl +h,Z0), T0(t2+h, o)) as
a supremum. Finally, the upper bound for ¢ + h < T leads to the claim. O

T-1 < T-h < t < T), we conclude from
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Abstract

A probabilistic representation of the solution (in the viscosity sense)
of a quasi-linear parabolic PDE system with non-lipschitz terms and
a Neumann boundary condition is given via a fully coupled forward-
backward stochastic differential equation with a reflecting term in the
forward equation. The extension of previous results consists on the
relaxation on the Lipschitz assumption on the drift coefficient of the
forward equation, using a previous result of the authors.

Key words: Probabilistic formulae for PDE, Forward backward stochastic
differential equations, Skorokhod problem, Reflected Stochastic Differential Equations.
AMS subject classifications: 60H10, 35K55, 60J60, 60K25.

Introduction

Deeper relations between stochastic differential equations and systems of PDE
have been established since [4] developed the theory of backward stochastic
differential equations. Roughly speaking, combining a forward stochastic
differential equation with a BSDE, the Feyman-Kac formula can be extended to
nonlinear PDE, and not only in a classical sense, but also via viscosity solutions.
Usually, the deterministic problems treated in this way are posed in the
whole domain R¢, or in a bounded domain of R? with Dirichlet boundary
condition. With a Neumann boundary condition, the problem was studied by
Y. Hu using local time around the boundary of the domain. This technique is
closely related to a stochastic version of the Skorokhod problem (see e.g. [6],
for a direct application in this sense). We extend these studies and relations
to the case of fully coupled systems of FBSDER in which the open set is not
necessarily convex but still smooth (this restriction is for commodity and may
be removed), and the drift coefficient of the forward equation is monotone in z,
instead of Lipschitz. In this way, we generalize some results from [5] and [1].
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In this paper we give a probabilistic representation of the solution of a quasi-
linear PDE system extending some results of those given in [5] and [1] on a
system of a fully coupled forward-backward stochastic differential equations
with a reflecting term in the forward equation (FBSDER) and its relation with
a system of quasi-linear partial differential equations, in short PDE. Preceding
works on this line were due to Y. Hu and to E. Pardoux and S. Zhang (cf. [6]).
In our case, the drift satisfies the monotonicity condition introduced before,
and the domain O is not necessarily convex. Existence of solution under such
conditions was proved in a precedent paper by the authors (cf. [3]).

In Section 1 we start giving the suitable framework for the reflected problem
and recall a previous result which will be used later on. In Section 2, we state
the general framework for the study of a fully coupled FBSDER, and provide a
probabilistic interpretation for a system of quasi-linear PDE with homogeneous
Neumann boundary condition.

1 Statement of the “reflected” problem

Let (2, F, P) be a complete probability space, {F;}+>0 an increasing and right
continuous family of sub-o-algebras of F such that Fy contains all the P-null
sets of F, and {W4; t > 0} an m-dimensional standard {F;}-Wiener process.

Let O be an open connected bounded subset of R? given by O = {¢ > 0},
with ¢ € C?(R?), and such that 00 = {¢ = 0}, with |[V¢(x)| = 1 for all = € 90.
Observe that in particular ¢, V¢ and D?¢ are bounded in O. Then there exists
a constant Cy > 0 such that

2(z’ — x,Vo(x)) + Cola’ — x> >0, Vo ecdo, Va' € O. (1)
We are also given a final time 7" > 0, and two random functions:
b:Ox[0,T]x0O =R ¢:Qx[0,T] x O — R>™

such that

(i) b and o are uniformly bounded;

(ii) for all # € O the processes b(-, -, z) and o (-, -, z) are {F; }-progressively
measurable;

(iii) for all ¢ € [0,7] and a.s. w, the function b(w,t,) is continuous on O;

(iv) there exist two constants Ly, € R and L,, > 0 such that for all
t€[0,T] and all 2,2’ € O,

(x — a2, b(w, t,z) — b(w, t,2") < Ly, |z — 2'|*, a.s.,

lo(w, t,z) —o(w, t,2")|| < Ly, |z —2'|, a.s.,

where | - | and || - || denote the usual Euclidean and trace norm for vectors and
matrices respectively.
From now on, we will omit the explicit dependence of the processes on w.
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Consider the following problem:
t t
X :xo—i—/ b(s,XS) d8+/ O'(S,Xs)dWS — ky, (2)
0 0
t t
b= / V(X Ik, |kl = / Lix.coop ik, t€[0,T), (3)
0 0

where x € O is given, and |k|; stands for the total variation of k on [0, ].

Definition 1 A strong solution to the above problem is a pair of {F}-adapted
and continuous processes (X, k) defined on Q x [0,T], the first one with values
in O, the second one with values in R and paths of bounded variation in [0,T),
satisfying the equations (2)-(3) a.s. for all t € [0, T].

Main result stated in [3], which generalizes a result by Lions and Sznitman when
b is Lipschitz, is the following:

Theorem 1 Under the assumptions (i)-(iv), for each xo € O given there
exists a unique pair (X, k), strong solution of (2)-(3).

2 Forward-Backward Stochastic Differential Equations with Reflec-
tion and representation of a PDE system

We continue considering the complete probability space (€2, F, P), and the m-
dimensional standard {F;}-Wiener process {W;; ¢t > 0} given in Section 1,
but now we suppose that, for each ¢ > 0, F; coincides with the o-algebra
o(Ws; 0 < s <t) augmented with all the P-null sets of F.

Let T > 0 be fixed, and consider the open set O introduced in Section 1.

For each integer [ > 1, we shall denote by M% (0, T;R') the Hilbert subspace
of L2(Q x (0,T);R!) formed by those elements that are {F;}-progressively
measurable, and we will write L% (Q2; C([0,T];R")) to denote the space of the
elements of L?(Q;C([0,T];R")) that are {F;}-progressively measurable. Thus,
L% (9;C([0,T);RY)) is a Banach subspace of L*(Q; C([0,T];R!)).

Similarly, we denote by M ]2_-t(0, T;O) the complete metric subspace of the
space M% (0,T;R?) constituted by the elements X € M% (0,T;R?) such that
a.e. t € (0,7), X; € O as.; we shall also use L% (; C([0,7]; O0)) to denote the
complete metric subspace of L%, (€; C([0,T];R")) formed by those elements X
in the last space such that a.s. X; € O for all ¢ € [0, T]. Finally, we shall denote
by L?(Q, Fr; O) the complete metric subspace of L%(Q, Fr;R?) formed by the
Fr-measurable random variables ¢ € L?(€;R?) such that a.s. £ € O.

We are given four random functions:

b:Qx[0,T]x O xR* x R™™ =R f:Qx[0,T] x O x R* x R™™ — R,

c:Qx[0,T] x O xR" x R™*™ - R>*™ 1.0 x O — R,
such that
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(’) b and o are uniformly bounded;

(ii”) for all (z,y, z) € O x R™ x R"*™ the processes b(-, z,y, 2), f(-,z,y, 2)
and o(-,x,y,2) are {F;}-progressively measurable, and the random variable
h(-,x) is Fr-measurable;

(iii’) for all (t,z,y,2) € [0,T] x O x R™ x R" ™ the functions b(t, -, y, 2)
and f(t,,-, z) are a.s. continuous on O and R™ respectively;

(iv") there exist real constants Ly, and Ly, , and nonnegative constants
Ly,, Ly, Ly,, Ly., Lo,, Lo, ng, Ly, and Iy such that for all ¢ € [0,7], all
z, 2’ € O,all y,y € R", all 2,2’ € R"™™ and a.s.,

(J) - xlvb(tamayvz) - b(t,l‘/,y, Z)) < Lbr|x - Z‘/|2,

/ !/ / /
|b(t7x7yvz) - b(t,x,y )y % )| < Lby|y_y | +Lbz||2 -z ||7
lo(t,z,y,2) — oty )P < LZ, Jo — 2’ P + L7 ly —y/|* + L7 ||z — 2|,

=y, ft,z,y,2) = f(t, 2,9, 2)) < Ly, ly — ' %,
|f(tw,y,2) = f(t, 2"y, 2")| < Ly, o —a'| + Ly, |2 = 2],
|f(t, 2y, 2)| < [f(t2,0,2)+ lo(1+[yl]),
|h(z) — h(z")] < Lp|z —2';

T
) E/ 1£(£,0,0,0)[2dt + E|h(0)[2 < oo,

0
We want to study the following problem:
t t
X, = 20 +/ b(s, Xo, Y, Z2) ds +/ o(5, X0 Yo, ) AW, — ks (4)
0
T
Y, = h(Xp) + stS,Y;,Z)ds—/ Zs dWs, (5)
t

t
/ws ) dlkl.. |k|t=/1{xseamd|k|s, te(0,T], (6)
0

where z¢ € O is given.

Definition 2 A solution to the problem (4)-(6) is a set (X,Y,Z k) of four
{F:}-progressively measurable processes defined on Q x [0,T], such that X is
continuous with values in O, k is continuous with values in R and paths of
bounded variation in [0,T], (Y,Z) € Mz, (0,T;R™) x MZ (0,T;R"*™), and the
equations (4)-(6) are satisfied a.s. for all t € [0,T).

For the resolution of the above fully coupled FBSDER, we will use the following
result, that is a direct consequence of Theorem 1:

Corollary 2 Under the assumptions (')-(iv’), if (Y,Z) € Mz (0,T;R™) x
M3 (0, T;R™*™) is fized, there exists a unique pair (X, k) of {.7-}} progresswely
measurable processes defined on Qx [0,T], such that X is continuous with values
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in O, k is continuous with values in R? and paths of bounded variation in [0,T),
and they satisfy a.s. for all t € [0,T] that

t
Xt—mo—|—/ bsXs,Ys,Z)ds—F/U(S,XS,YS,ZS)dWS—kt, (7)
0

t
/ Vo(Xo)dkle, k] = / Lix.co0y dlkls. (8)
0

We will also need the following well-known result (see for instance Pardoux’s
notes at Geilo, 1996) for the backward equation:

Theorem 3 Under the assumptions (i)-(v"), let be given X € Mz (0,T;0)
and§ € L*(Q, Fr; O). Then, there exists a unique pair (Y, Z) € M% (0 T; ]R")
M3 (0, T;R™*™) such that

T T
Y, = h(¢) + f(s,Xs,Ys,Zs)ds—/ Z,dw., (9)
t t

a.s. for all t € [0, T]. Moreover, we have that Y € L%, (Q; C([0, T|;R™)).

Using the two results above, it is not difficult to prove existence and uniqueness
of solution of problem (4)-(6) if T" is small enough. More exactly, we have the
following result, whose proof we will omit for the sake of brevity:

Theorem 4 Suppose the assumptions (°)-(v’), and that moreover o does not
depend on z. Then, there exists a Ty > 0 such that if T < T, the application
D defined from

L%, (Q;C([0,T);0)) x L%, (2 C([0,T];R™)) x Mz, (0, T; R"*™)

on itself by ®(X,Y, Z) = (X,Y,Z), with (X,Y,Z) the unique solution of
t

t
Xt—xo+/ b(s, Ko Ve, Zo)ds + | (s, Ko, Ya) dW, — i,
0

t
/ V(R dF. 1= [ 1x.co0p diF
— — T —
Yt—hXT / f(s Z)ds—/ Zs dWs,
t
a.s. for allt € [0,T], is a contraction. So, if T < T, the problem (4)-(6) has a

unique solution.

For the resolution of the above fully coupled FBSDER, for any 7" > 0, we
follow [5] and [1].
We shall denote by I'; the mapping

Ty M7 (0,T;R™) x Mz (0, T;R™™) — M3 (0,T;R"™) x M7, (0, T;R™*™),
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defined by T'1(Y, Z) = (Y, Z), with (X,Y, Z, k) the unique solution of
t
Xt_x0+/ b(s, X, Y, 2, ds+/ (5, Xo, Yo, Zo) AW, — K,
¢

/’v¢ dmu,|mt=(3uxﬁmnaéu

T
Y, = h(X /f )ds—/ Z, dW,,
t

a.s. for all t € [0,T].
We will denote by I's the mapping

Ty : M7,(0,T;0) x L*(Q, Fr; 0) — M%,(0,T;0) x L*(Q, Fr; 0),

defined by I'>(X,¢) = (X, Xr), with X such that (X,Y,Z,k) is the unique
solution of

T T
E=M®+/1@J;K29%—/‘Zﬂn
t t
Xt:a:0+/ b(s, X,V Z)ds+/ (s, Ko, Vo, Z2) AW, — o,
0 0

t t
m:—Avw&mwm|m=41@@mﬂm,

a.s. for all ¢ € [0, 7.

By Corollary 2 and Theorem 3, under the conditions (i’)-(v’) the maps
I'y and T'y are well defined. Also, it is clear that to solve the problem (4)-
(6) is equivalent to finding a fixed point for I’y or I's. Thus, in order to
prove existence and uniqueness of solution to problem (4)-(6), it is enough
to find a Hilbert norm in M% (0,T;R") x Mz (0,T;R™*™), such that I' is a
contraction for this norm. Analogously, it is enough to find a complete metric
in M3 (0,T;0) x L*(, Fr; O), for which the map I'; is a contraction.

From now on, for [ > 1 integer, and A € R, we will denote by || - ||» the norm
on M ]2_-t (0,T;RY), equivalent to the usual one, given by

T
|MK=EA e |¢Pds.

For the sake of brevity on these notes we omit here the estimates on
the difference of two solutions (X, k) and (X', k") associated respectively to
processes (Y, Z) and (Y’,Z’), or the inverse. If we combine these estimates
in the two possible orders, to obtain estimations for I'y and I's, we have two
possibilities.

On the one hand, one can search for a A € R such that, with the norm on
M%t (0, T;R™) x M%t (0, T;R™ ™) defined by

1Y, 215 = IYIIX + 12113,
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the mapping I'; is a contraction.

On the other hand, one can search for a A such that, with the metric
on M%(0,T;0) x L2(, Fr; O) induced by the norm on M% (0,T;R%) x
L?(Q, Fr;R?) defined by

I(X, &) = exp(=AT) B[ + A ]| X 13,

the mapping I'; is a contraction.

Then, one obtains existence and uniqueness for (4)-(6) that generalize to b
monotone and O not necessarily convex some of the results in [5] and [1].

For example, existence and uniqueness of solution for (4)-(6) hold when its
coupling is weak, that is, when dependence of b and o respect to their variables y
and z is small, or, analogously for the backward equation, when the dependence
of f and h with respect to z is small. More exactly, we have:

Theorem 5 Let conditions (’)-(v’) hold. Then there exists an 9 > 0
depending on Lo, Ly,, Ly, Ly,, Ly, Ly and T such that if Ly, Ly., Lo,
L,, € [0,¢0), then there exists A such that I'y is a contraction, and thus there
exists a unique solution to (4)-(6). On the other hand, the same thesis holds
for I'a, changing roles of Ly, Ly,, Ly,, and Ly, with L, and Ly, .

Also, using Tz, and reasoning as in [1] or [2], one can prove

Theorem 6 Let conditions (i’)-(v’) hold, and suppose one of the following

two conditions:

a) If h is independent of x, there exists o € (0,1) such that (o, T)Ly, C3 < Ay.

b) If h does depend on x, there exists o € (ki L2_Lj 1) such that u(c, T)Lj < 1.
Then, there exists a unique solution for (4)-(6).

Remark 1 Reasoning as in [2], one can make some (technical) improvements.
Namely, it is possible to consider that o can depend on z, but introducing
compatibility conditions. On other hand, if Ly, is negative enough, then (4)-(6)
has a unique solution for all final time T > 0.

Finally, as in [5], and in [1], with the previous results on the problem (4)-
(6), one can prove existence of viscosity solution to a homogeneous Neumann
problem for an associated system of quasi-linear parabolic PDE. We briefly
recall here how this can be done.

For each (t,x) € [0,T] x O, consider the problem

X0 =t [0 X0 2 [l X Y 2 W, —
t t
T T
Vet = b+ [ X i - [z aw,

S

kb :_/t Vo(XET)dkD |, k57 :/t Lixtecgoy dE]r, s €[t,T).
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It is immediate to extend to this family of problems the previous theorems on
existence and uniqueness of solution for problem (4)-(6).

To establish the relation with PDE, we assume now that b, o, f and h are
deterministic, moreover, we suppose that ¢ does not depend on z. Also, for
simplicity, we consider n = 1. For short, we introduce the following notation:

d
. 0%
2 (00,2 9) g (s2) + (05,9, 2), V(s )

i,j=1

(Le)(s,2,y,2) =

DN | =

and consider the homogeneous Neumann problem

%(t, ) + (Lu)(t, 2, u(t, 2), (Vu(t,2)) otz u(t, 2))

(s ult 2), (Yl 2) ot 2, u(t 2)) = 0, (L2) € (0,T) x O,
%(t,x) —0, (L)€ (0,T) x 9O,

W(T,2) = h(z), @ €O. (10)

Then, we have, for example, the following result, that can be proved as Theorem
3.8 in [1], and actually can also be adapted to deal with a system.

Theorem 7 Under the assumptions of Theorem 6, suppose, moreover, n = 1.

Suppose also that b, o, f and h are deterministic, continuous in all its variables,
and o does not depend on z. Then, the function u defined by u(t,z) = Yf’t,
(t,x) € [0,T) x O, is a viscosity solution of (10).
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Abstract

We first study the existence and uniqueness of strong solutions of a
three dimensional system of globally modified Navier-Stokes equations
with finite delay in the locally Lipschitz case. The asymptotic behaviour
of solutions, and the existence of pullback attractor are also analyzed.
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1 Introduction

Let © C R? be an open bounded set with regular boundary I, and consider the
following system of globally modified Navier-Stokes equations (GMNSE) on §)
with a homogeneous Dirichlet boundary condition

O vAut Py (Jul) [(u- V)] + Vp = £(1), in (0,400) x ©,
V-u =0 in (0,+00) x Q, (1)

u=0 on (0,400) x T,
w(0,z) =u’(z), =z€Q,

where v > 0 is the kinematic viscosity, u is the velocity field of the fluid, p the
pressure, u° the initial velocity field, f(¢) a given external force field, and Fy :
R+ — RT is defined by

N
Fn(r) = min{l, —}, reRT,
T

117
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for some N € RT.

The GMNSE (1) has been introduced and studied in [1] (see also [2], [3], [8]
and [9]). In this paper we are interested in the case in which terms containing
finite delays appear. We consider the following version of GMNSE (we will refer
to it as GMNSED):

%?_WM+PWWWHW-WM+VP

=Gt u(t—pt)) in (r,4+00) x Q,

Veu =0 in (1,400) x £, (2)
u=0 on (1,4+00) x T,

u(r,z) =u'(z), =z€Q,

u(t,z) = ¢t —1,2), in (1 — h,7) X Q,

where 7 € R is an initial time, the term G(¢,u(t — p(t))) is an external force de-
pending eventually on the value u(t—p(t)), p(t) > 01is a delay function and ¢ is a
given velocity field defined in (—h,0), with A > 0 a fixed time such that p(¢) < h.

The aim of this paper is to report on some recent results concerning the
existence, uniqueness and asymptotic behaviour of solutions of (2). The detailed
proofs of these results can be found in [4]. In the next section we state some
preliminaries, establish the framework for our problem, and the existence and
uniqueness of weak and strong solutions. In Section 3 we analyze the asymptotic
behaviour of solutions, obtaining finally the existence of pullback attractor for
our model.

2 Preliminaries

To set our problem in the abstract framework, we consider the following usual
abstract spaces (see [12] and [14, 15]):

VY= {u e (C(Q))? - divu = o},

H = the closure of V in (L?(Q))? with inner product (-,-) and associate norm
||, where for u,v € (L?(2))?,

3
wm=;4wmmm7

V = the closure of V in (H{ (2))? with scalar product ((-,-)) and associate norm
|-l , where for u,v € (H}(2))?,

3

(w,0) = > Ou; 0v; 4,

3,j=1
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It follows that V' € H = H' C V', where the injections are dense and compact.
Finally, we will use |-||, for the norm in V' and (-,-) for the duality pairing
between V and V.

Now we define the trilinear form b on V x V x V by

3
b(u, v, w) = Z /Qui%wjdm, Yu,v,w €V,

ij=1
and we denote
by (u,v,w) = Ex(|lv]))b(u, v,w), Yu,v,weV,

and

(By(u,v),w) = by (u,v,w), Vu,v,weV.

The form by is linear in v and w, but it is nonlinear in v.

We also consider A : V. — V' defined by (Au,v) = ((u,v)). Denoting
D(A) = (H*(Q))3 NV, then Au = —PAu,Vu € D(A), is the Stokes operator
(P is the ortho-projector from (L?(2))® onto H). Moreover, we assume
G :R x H— H, is such that

cl) G(-,u) : R — H is measurable, Vu € H,

c2) there exists a nonnegative function g € L} (R) for some 1 < p < 400,

and a nondecreasing function L : (0, 00) — (0, 00), such that for all R > 0
if lul, |v] < R, then

G(t, u) — G(t,v)| < L(R)g">(t) [u— v
for all ¢ € R, and
c3) there exists a nonnegative function f € L} (R), such that for any u € H,
Gt w)? < g(t) [uf’ + £(1), VteR.

Finally, we suppose ¢ € L%’ (—h,0; H) and u® € H, where % + ﬁ =1.
In this situation, we consider a delay function p € C(R) such that 0 < p(t) < h
for all t € R, and there exists a constant p, satisfying

pPt)<p.<1l VteR.
Definition 1 Let 7 € R, u° € H and ¢ € LQpl(—h,O;H) be given. A weak
solution of (2) is a function
u € L2p/(r —hT; H)NL*(1,T; V)N L®(1,T; H) for all T > T,
such that

%u(t) + vAu(t) + By (u(t),u(t)) = G(t, u(t — p(t))) in D'(,+o00; V'),
u(r) = u’,
u(t)=¢(t—71) te(r—nh,T).
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Remark 1 We suppose u is a weak solution of (2) and we define g(t) =
go071(t), where 0 : [1,+00) — [T — p(7), +00) is the differentiable and strictly
increasing function given by 0(s) = s — p(s). Then, taking into account that
g € LP(t — p(7),T) for all T > 7, we have that G(t,u(t — p(t))) belongs to
L?(r,T;H) for all T > 7.
d

Then, %u(t) € L?(1,T;V"), and consequently (see [15]) u € C([r,+o0); H)

and satisfies the energy equality, for all T < s < t,

uOF = ) +2v [ u)lar =2 [ Gutr = o)), utr)) dr. (3)

The following theorem, which improves Theorem 3 in [5], states the existence
and uniqueness of weak and/or strong solutions.

Theorem 1 Under the conditions c1)-c¢3) in the previous section, assume
that 7 € R, u® € H and ¢ € L* (—h,0; H) are given. Then, there exists a
unique weak solution w of (2) which is, in fact, a strong solution in the sense
that

uwe€ C([r+¢&,T;V)NLA(1 +¢,T;D(A)), forallT—7>e>0. (4)
Moreover, if u® € V, then

uwe C([r,T;V)N L2(T,T;D(A)), for all T > 1. (5)

3 Asymptotic behaviour of solutions

In this section we first establish a result about the asymptotic behavior of the
solutions of problem (2) when ¢ goes to +o0.

Theorem 2 Let us suppose that c1)-¢8) hold with g € L*(R), and assume
also that >\ (1 — p.) > [gloc, where |gloo = [|g]| Lo (r)-

Let us denote € > 0 the unique root of & — v\ + % = 0. Then,
for any (u°,¢) € V x L2(—h,0; H), and any T € R, the corresponding solution

u(t; 7,u’, @) of problem (2) satisfies

futim,u, 6) < (|u0|2+7'9'°°e€h /0 o) ds ) 0
vA(l—p.) Jop

efat

t
€s > T
—|—V/\1/Te f(s)ds, forall t>r1

In particular, if [7° e f(s)ds < oo, then every solution u(t;T,u’, @) of (2)
converges exponentially to 0 as t — +o0.

Now, we study the existence of global attractor for the dynamical system
generated by our problem. As this model is non-autonomous, our analysis
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requires of the theory of pullback attractor which we will introduced below (see
[7], [10] and [11]).

Let X be a metric space.
Definition 2 A family of mappings {U(t,7): X — X : t,7 € R,t > 7} is said
to be a process (or a two—parameter semigroup, or an evolution semigroup) in
X if
U, )U(r,7)=U(t,7) forallt>r>r,
U(r,7)=1d for all T € R.

The process U(-,-) is said to be continuous if the mapping x — U(t,7)x s
continuous on X for all t, 7 € Rt > 7.

Recall that dist(A, B) denotes the Hausdorff semidistance between the sets
A and B, which is given by

dist(A, B) = sup inf d(a,b), for A,B C X.
acAbEB

Definition 3 Let U(-,-) be a process in the metric space X. A family of
compact sets {A(t)},cp is said to be a (global) pullback attractor for U(-,)
if, for every t € R, if follows

(i) U(t,7)A(T) = A(t)  for all T <t (invariance), and

(i) lim dist(U(t,7)D, A(t)) = 0 (pullback attraction) for all bounded subset
D cC X.

The concept of pullback attractor is related to that of pullback absorbing
set.

Definition 4 The family of subsets {B(t)},.p of X is said to be pullback
absorbing with respect to the process U (-, ) if, for every t € R and all bounded
subset D C X, there exists Tp(t) <t such that

U(t,7)D C B(t), forall T <p(t).

In fact, as happens in the autonomous case, the existence of compact
pullback attracting sets is enough to ensure the existence of pullback attractors.
The following result can be found in [7] and [13] (see also [6]).

Theorem 3 Let U(-,-) be a continuous process on the metric space X. If there
exists a family of compact pullback attracting sets {B(t)},cp , then there ewists
a pullback attractor {A(t)},cp , with A(t) C B(t) for allt € R, given by

A(t) = U Ap(t), where Ap(t) = ﬂ U U(t,7)D.

DCX neN 7<t—n
bounded
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Now we will establish the existence of the pullback attractor for our GMNSED
model (2).

First we construct the associated process. To this end, assume that
G : R x H — H satisfies cl), ¢2) and ¢3) with g € L>*(R). Thus, without
loss of generality we can assume that G satisfies ¢2) with ¢ = 1, and there
exists a nonnegative constant a such that

|G(t,u)|* < alul*+ f(t) V(t,u) €R x H. (6)
We will assume moreover that
fe L. (R). (7)

Under these assumptions, for each initial time 7 € R, and any ¢ €
C(—h,0; H), Theorem 1 ensures that if we take u’ = ¢(0), problem (2)
possesses a unique solution u(-;7,¢) = u(-;7,$#(0),$), which belongs to the
space C([r — h,T); H) N L*(1, T; V)N C([t + €, T}; V) N L*(1 + €, T; D(A)) for
al T >7+e>T.

Then, we define a process in the phase space Cy = C([—h,0]; H) with sup
norm, [ ¢l|c, = supge(_p o) [#(s)]; as the family of mappings U(t,7) : Cu — Cu
given by

U(t77—)¢ = ut(';7—7 (b)? (8)

for any ¢ € Cy, and any 7 < t, where w;(+; 7, ¢) € Cy is defined by
u(s;7,¢) = ult +s;7,¢) Vse[-h,0] (9)

Proposition 4 [t is easy to check that if G satisfies c1), c2) with g = 1, (6)
and (7), then the family of mappings U(T,t), T < t, defined by (8) and (9) is a
continuous process on Ch.

Now, we will obtain that, under suitable assumptions, there exists a family
of bounded pullback absorbing sets in C'y and then, another one in Cy/, for the
process U (t, 7).

Theorem 5 Assume that G satisfies c1), ¢2) with g = 1, (6), (7), and
VX1 - ps) > a.
eh

Let € > 0 denote the unique solution of €— v + m =0.

Let us suppose that fi}o e" f(r)dr < co, and define

pe(Lrh—t) [t
pH(t):1—|—T/ e f(r)dr teR.
1

— 00

Then, for every bounded subset D C Cy there exists a Tp > 1+ h such that
for any t € R and all ¢ € D one has

lu(s; 7, 0)|> < pu(t) Vsclt—h—1,t, forall 7<t—Tp.
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As a direct consequence of the preceding result, we get the existence of the
family of bounded absorbing sets in C'y.

In fact, one can prove the following result of existence of an absorbing family
of bounded sets in Cy = C([—h,0];V) and a necessary bound on the term

40
t+012 |Au(r)|? dr.

Theorem 6 Under the assumptions in Theorem &, there exist two positive
functions py, F € C(R) such that for any bounded set D C Cy and for any
teR,

lut; 7, &)|I* < pv () V7 <t —Tp, V¢ € D,

and

t+05
/ \Au(rim, )P dr < F(t), V7 <t—Tp—h, V6 < 6s € [-h,0], Vo e D,
t+61

where Tp s given in Theorem 5.

Finally, under an additional assumption, we can ensure the existence of the
pullback attractor.

Theorem 7 Under the assumptions in Theorem 5, suppose moreover that

sup e_“/ e f(r)dr < cc.

s<0 —00

Then, there exists a pullback attractor {Ac,, (t)}ier for the process U(-,-) in
Cu defined by (8) and (9). Moreover, Ac, (t) is a bounded subset of Cv for
any t € R.
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1 Introduction

Factors which influence the behavior of real phenomena are very often imprecise
due to inexact measurements or imprecise data. Fuzzy mathematics can be
used to handle this kind of uncertainty and make predictions about the changes
produced in a certain process.

We consider a model consisting on a first-order fuzzy differential equation
and illustrate how the existence of solutions can be deduced considering the
existence of an adequate pair of upper and lower solutions. We mention that
our approach considers the concept of differentiability of fuzzy functions in the
sense of Hukuhara.

Upper and lower solutions method is shown to be effective for the study
of the initial value problems for fuzzy differential equations, but also for other
situations, such as periodic boundary value problems.

For the development of the method of upper and lower solutions for
fuzzy differential equations, we consider a partial ordering in the space E! of
normal, upper semicontinuous, fuzzy-convex and compact-supported mappings
u : R — [0,1]. The expression of the differential problem on its equivalent
integral form and the application of some fixed point results allow to deduce
the existence of solution, and even uniqueness of solutions.

On the other hand, for the development of the monotone iterative technique
for first-order fuzzy differential equations, it is required to prove some additional
results concerning preservation of ordering in convergence and the application
of (relative) compactness criteria in the space E*.

The limitations of the solutions to fuzzy differential equations from the point
of view of Hukuhara differentiability are skipped by the introduction of impulses.
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2 Some basic concepts
In the space of n-dimensional fuzzy sets E™, we consider the metric

doo(x,y) = sup dy([z]",[y]*), ©, y € E",
ac0,1]
where dp represents the Hausdorff distance in the space of nonempty compact
and convex subsets of R", denoted by Kf.

A fuzzy differential equation u'(t) = f(¢t,u(t)), t € [to, +00), where tg € R
and f : [tg,+00) x E™ — E™, can be written on its integral representation
x(t) = x(to) + fttg f(s,xz(s))ds, t > to. In the sequel, for simplicity, we assume
that t() =0.

If we consider the set of fuzzy intervals E', then we use the following
notation: for z € E', the level sets of = are denoted by

[#]* = [Tar, Tar], for all a € [0,1],
but we also use the parametric functions to represent fuzzy intervals zp :

[Oa 1] — Rv $L(Cl) = Zal; O € [07 1]7 TR : [07 1] — ]Ra l‘R(Cl) = Tqr, @ € [Oa 1]

3 Upper and lower solutions
We consider the first-order fuzzy differential equation
W'(t) = f(t,u(t)), t € [0,+00), (1)

where f:[0,4+00) X E" — E™ is a fuzzy-valued function.

First, consider n = 1. In order to define the concepts of upper and lower
solutions to problem (1), we define the following ordering relations in the space
of fuzzy intervals E'.

Definition 1 Given z,y € E', we say that x < y if and only if 4 <
Yai and Tor < Yor, for every a € [0, 1].

Definition 2 Given =,y € E', we say that x
Yai and Tor < Yor, for every a € [0,1], that is, [z]*

Y

y if and only if xy

=
C [y]*,Vael0,1].

Remark 1 In terms of the parametric functions, * < y is equivalent to
xrp <wyr and xp < yr in[0,1], and x < y is equivalent to yr, < xp and xp <
yr in [0,1].

Note that the ordering relation < makes sense also for n > 1, that is, given
x, y € E™, we say that x <y if and only if [z]* C [y]*,Va € [0,1].

These ordering relations can be also extended to the space of fuzzy-valued
functions defined on a certain real interval.

Definition 3 Given f,g : [a,b] — E', we say that f < g if f(t) < g(t), for
every t € I. A similar concept can be given for the ordering relation <.
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Next, we are in conditions to define the concepts of upper and lower solution
of (1).

Definition 4 A function a € C1([0, +00), E') is a <-lower solution for (1) if
o (t) < ft,alt)), t € [0,+00).

We define an <-upper solution 3 € C1([0,+00), E') as a function satisfying the
reversed inequality.

Analogous concepts can be defined for the partial ordering <.
We see how the existence of solution for problem (1) can be derived from
the existence of appropriate upper and lower solutions.

4 Existence of solution to fuzzy differential equations via upper and
lower solutions method

First, we recall some extensions of the Banach fixed point theorem to partially
ordered sets which are applicable in the study of the existence and uniqueness
of solution for fuzzy differential and fuzzy integral equations.

The following fixed point result from [14] is useful to obtain the existence of
solution to differential and integral equations assuming the existence of a lower
solution.

Theorem 1 Let (X, <) be a partially ordered set and suppose that there exists
a metric d in X such that (X,d) is a complete metric space. Assume that [ is
continuous or X satisfies that

if a nondecreasing sequence {x,} — = in X, then x, <z, Vn. (2)

Let f : X — X be a monotone nondecreasing mapping such that there exists
k € [0,1) with d(f(z), f(y)) < kd(z,y), Yo > y. If there exists xg € X with
xo < f(xo), then f has a fized point.

This result extends some results in [22], and the addition of the hypothesis
every pair of elements in X has a lower bound or an upper bound, (3)

provides uniqueness of the fixed point.

In Theorem 2.4 [14], assumptions of Theorem 1 are adapted in order to
obtain the existence of a fixed point of f, replacing the existence of zy under
the conditions of Theorem 1 by the existence of g € X with zg > f(x¢), and
also replacing condition (2) by

if a nonincreasing sequence {z,,} — x in X, then z < z,,, Vn. (4)

In [17], similar results are proved for nonincreasing functions f.
Asg illustrated in [16], conditions (2), (3) and (4) are satisfied for the spaces
(B, <), (EY, =), (C(J,EY), <), and (C(J, E'), <) (J a real compact interval).
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In this reference, some results are given on the existence (or existence of a
unique solution) for the fuzzy equation F(x) = x, where F : E! — E' or
F : C(J,EY) — C(J,E"Y), for J a real compact interval, in presence of an
upper (or lower) solution. In the case of higher dimensional fuzzy sets (base
space E™), the same results hold, considering the partial ordering <. Besides,
the initial value problem for fuzzy differential equations is studied in E™, n > 1,
deriving results on the existence of a (unique) solution. Moreover, the fuzzy
differential equation with finite delay

{ w(t) = f(t,u), t € J =1[0,T],

uOZLPEOOa

(5)

where f € C(J x Cy, E™), Cy = C([—7,0], E™), and 7 > 0, is also considered in
[16] in relation with the method of upper and lower solutions.

Another fixed point result which allows to deduce interesting properties on
the existence of solutions to problem (1) is Tarski’s Fixed Point Theorem [28], in
relation with the existence of fixed points for a nondecreasing function F' which
maps a complete lattice X into itself and such that there exists xg € X with
F(xz9) > zo. In the reference [18], complete lattices are analyzed in the spaces
of fuzzy intervals and fuzzy-interval-valued functions and, hence, application of
Tarski’s Theorem allows to deduce the existence of solutions for fuzzy equations
and fuzzy differential and integral equations in E' in presence of a lower or
an upper solutions. The corresponding solutions are localized in the region
delimited by the upper or/and the lower solutions.

On the other hand, consider the boundary value problem

u'(t) = f(tu(t), t € J =[0,T], (6)
Au(0) = u(T),

where T'> 0, f : J x E' — E' and A > 0. We remark that, for a function
which is differentiable in the sense of Hukuhara, the diameter of the level sets
is nondecreasing in time, thus the study of periodicity presents more difficulties
in the context of fuzzy differential equations.

In [8], and considering the approach of Hukuhara-differentiability, some
aspects of the boundary value problem (6) are considered.

Besides, in [19], different fixed point theorems are applied to the boundary
value problem (6) obtaining some results on the existence of solutions in presence
of upper and lower solutions. We recall, as an example, Theorem 4.6 [19].

Theorem 2 (Theorem 4.6 [19]) Let M > 0 and A > eMT. Suppose that
[ is continuous, the existence of a <-lower solution « to problem (6), and that
the Hukuhara differences f(t,x) —g Mx, exist for every (t,z) with © > «(t).
Also assume the validity of the following monotonicity property

ft,x) —g Max < f(t,y) —g My, Vt € J, z,y € E', at) <z <y,
and there exists k > 0 such that

dOO(f(tax) —H anf(tay) —H My) S kdoo(xvy)a vVt € Jv T,y S Ela
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with x >y > «a(t), where ln)\kaMT < 1. Then there exists a unique solution u
to the BVP (6) with u > «.

References [23, 24, 25] are devoted to the analysis of the existence of periodic
solutions to fuzzy differential equations from the point of view of Hukuhara
differentiability, solving the inconvenience of the increasing character of the
diameter of the level sets of the solution by the introduction of impulses in the
equation.

In particular, the problem studied in [25] is the following

u(t) = f(t,u(t), te[0,T], t #tg, k=1,2,...,p,
uty) = I(u(ty)), k=1,...,p, (7)
u(0) = u(T),

where T' > 0, J = [O,T], O=to<ti < - <tp <tlpp1 =T, Jp = [tk_l,tk],
for k = 1,...,p+1, I : E' — E' continuous for £ = 1,2,...,p, and
f:Jx E' — E! continuous in (J \ {t1,...,t,}) x E' is such that there
exist the limits limt_%; ft,x) = f(t,x), hmt—»t:’ f,x) for k=1,...,p and
r € EL

To complete the study of the existence and the approximation of solutions
for problem (7) through the monotone iterative technique, it is necessary to
study the main properties of fuzzy sets in relation with

e Calculus of the exact solution for some fuzzy ‘linear’ problems which are
taken as auxiliary problems in the study of a nonlinear equation.

e Study of comparison results valid in the fuzzy context but extending well-
known comparison results in the field of ordinary differential equations.

e Relative compactness criteria in spaces of fuzzy functions, interesting to
approximate solutions by iteration taking a lower solution or an upper
solution as the starting point.

e Study of the properties concerning the preservation of ordering in
convergence of sequences of fuzzy sets and fuzzy functions.

With more detail, we specify the problems which are addressed in references
[23, 24, 25] in order to obtain sequences of functions which approximate the
extremal solutions to (7) in the functional interval delimited by a pair of well-
ordered lower and upper solutions.

In [25], we calculate the exact solution for some auxiliary ‘linear’ problems
with impulses from the point of view of Hukuhara differentiability, solutions
which are given by an integral expression. Indeed, we analyze the solutions to

U/(t) + Mu’(t) = U(t)v te (tkvtk-'rl)v k= 07 1) Ry 2
th=c, k=1,...,p, (8)
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where M > 0,7 >0, J =[0,T], 0 € PC(J,E'), and ¢, € E*, k =1,2,...,p.
Taking into account that in the fuzzy case these problems are not equivalent,
we also study

u'(t) = —Mu(t) + o(t), t € (t,tht1), k=0,1,...,p,
ulty)=cp, k=1,...,p, 9)
u(0) = u(T).

The study of the solvability of these problems is closely connected with the
results in [5, 20], where initial value problems for non impulsive fuzzy ‘linear’
differential equations are considered.

Reference [23] includes comparison results which are useful to compare
the solutions to different initial value problems for fuzzy ‘linear’ differential
equations by comparing the independent term and the initial condition, in such a
way that the ‘sign’ of the independent term and the initial condition determines
the ‘sign’ of the solution, understanding the ‘sign’ as the relationship between
the specific function and x (o}, with respect to some partial ordering in El.

We consider two functions which are, respectively, an upper and a lower
solution to the nonlinear problem (7). In order to obtain two sequences which
approximate the extremal solutions to (7) between the lower and the upper
solutions, we iterate starting, respectively, at the lower solution and the upper
solution. To follow this procedure, we need some results from [24] which
guarantee the following properties:

e If a sequence of functions with values in E' is pointwise convergent and
all the terms are bounded by a fixed function with respect to some partial
ordering, the same relation holds for the pointwise limit of the sequence.

e If a sequence of (E') fuzzy-valued functions defined on a real compact
interval is monotone and it has a convergent subsequence, then the whole
sequence is convergent to the same limit.

Besides, also in [24], it is proved a relative compactness criteria for subsets
of C(J, E'), based on the relative compactness of the sets of the left- (resp.,
right-) branches of their elements.

Applying the tools of [23, 24], the monotone method is finally developed
in [25] for the periodic boundary value problem (7), under the appropriate
hypotheses on f, and functions Ij.

References

[1] S. Abbasbandy, J.J. Nieto, M. Alavi, Tuning of reachable set in one
dimensional fuzzy differential inclusions. Chaos Solitons Fractals, 26 (2005),
5, p. 1337-1341.

[2] B. Bede, S.G. Gal, Generalizations of the differentiability of fuzzy-number-
valued functions with applications to fuzzy differential equations. Fuzzy Sets
and Systems, 151 (2005), p. 581-599.



Upper and lower solutions method for fuzzy differential equations 131

[3] B. Bede, I.J. Rudas, A.L. Bencsik, First order linear fuzzy differential
equations under generalized differentiability. Inform. Sci., 177 (2007), 7,
p. 1648-1662.

[4] T.G. Bhaskar, V. Lakshmikantham, V. Devi, Revisiting fuzzy differential
equations. Nonlinear Anal., 58 (2004), p. 351-358.

[5] P. Diamond, Brief note on the variation of constants formula for fuzzy
differential equations. Fuzzy Sets and Systems, 129 (2002), p. 65-71.

[6] P. Diamond, P.E. Kloeden, Metric Spaces of Fuzzy Sets: Theory and
Applications. World Scientific, Singapore 1994.

[7] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications.
Academic Press, New York 1980.

[8] D. Dubois et al. (ed.) On boundary value problems for fuzzy differential
equations. Soft Methods for Handling Variability and Imprecision, edited
by , Advances in Soft Computing 48, Springer Berlin / Heidelberg 2008,
p. 218-225.

[9] E. Hiillermeier, Numerical methods for fuzzy initial value problems. Internat.
J. Uncertain. Fuzziness Knowledge-Based Syst., 7 (1999), p. 439-461.

[10] O. Kaleva, Fuzzy differential equations. Fuzzy Sets and Systems, 24 (1987),
p. 301-317.

[11] O. Kaleva, The Cauchy problem for fuzzy differential equations. Fuzzy Sets
and Systems, 35 (1990), p. 389-396.

[12] G.S. Ladde, V. Lakshmikantham, A.S. Vatsala, Monotone Iterative
Techniques for Nonlinear Differential Equations. Pitman, Boston 1985.

[13] V. Lakshmikantham, R.N. Mohapatra, Theory of Fuzzy Differential
Equations and In- clusions. Taylor & Francis, London 2003.

[14] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially
ordered sets and applications to ordinary differential equations. Order, 22
(2005), 3, p. 223-239.

[15] J.J. Nieto, R. Rodriguez-Lopez, Bounded solutions for fuzzy differential
and integral equations. Chaos Solitons Fractals, 27 (2006), 5, p. 1376-1386.

[16] J.J. Nieto, R. Rodriguez-Lopez, Applications of contractive-like mapping
principles to fuzzy and fuzzy differential equations. Rev Mat Complut, 19
(2006), 12, p. 361-383.

[17] J.J. Nieto, R. Rodriguez-Lopez, Ezistence and uniqueness of fized point
in partially ordered sets and applications to ordinary differential equations.
Acta Math. Sinica (Engl. Ser.), 23 (2007), 12, p. 2205-2212.



132 J.J. Nieto, R. Rodriguez-Lépez

[18] J.J. Nieto, R. Rodriguez-Lopez, Complete Lattices in Fuzzy Real Line. The
Journal of Fuzzy Mathematics, 17 (2009), 3, p. 745-762.

[19] J.J. Nieto, R. Rodriguez-Lopez, Euxistence and uniqueness results for
fuzzy differential equations subject to boundary wvalue conditions. In
Mathematical Models in Engineering, Biology, and Medicine, Proceedings
of the International Conference on Boundary Value Problems, American
Institute of Physics 2009, p. 264-273.

[20] J.J. Nieto, R. Rodriguez-Lopez, D. Franco, Linear first-order fuzzy
differential equations. Internat. J. Uncertain. Fuzziness Knowledge-Based
Syst., 14 (2006), 12, p. 687-709.

[21] M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions. J. Math. Anal.
Appl., 91 (1983), p. 552-558.

[22] A.C.M. Ran, M. C. B. Reurings, A fized point theorem in partially ordered
sets and some applications to matriz equations. Proc. Amer. Math. Soc.,
132 (2004), 5, p. 1435-1443.

[23] R. Rodriguez-Lopez, Periodic boundary value problems for impulsive fuzzy
differen- tial equations. Fuzzy Sets and Systems, 159 (2008), p. 1384-14009.

[24] R. Rodriguez-Lopez, Comparison results for fuzzy differential equations.
Inform Sci., 178 (2008), p. 1756-1779.

[25] R. Rodriguez-Lopez, Monotone method for fuzzy differential equations.
Fuzzy Sets and Systems, 159 (2008), p. 2047-2076.

[26] S. Seikkala, On the fuzzy initial value problem. Fuzzy Sets and Systems,
24 (1987), 3, p. 319-330.

[27] L. Stefanini, L. Sorini, M. L. Guerra, Parametric representation of fuzzy
numbers and application to fuzzy calculus. Fuzzy Sets and Systems, 157
(2006), p. 2423-2455.

[28] A. Tarski, A lattice-theoretical fizpoint theorem and its applications. Pacific
J. Math., 5 (1955), p. 285-3009.

[29] D. Vorobiev, S. Seikkala, Towards the theory of fuzzy differential equations.
Fuzzy Sets and Systems, 125 (2002), 2, p. 231-237.



Bol. Soc. Esp. Mat. Apl.
n°51(2010), 133-141

PATHWISE STATIONARY SOLUTIONS FOR STOCHASTIC
NEURAL NETWORKS WITH DELAY

A. OGROWSKY

Institut fiir Mathematik, Universitdt Paderborn
Warburger Strafe 100, 33098 Paderborn, Germany

ogrowsky@math.uni-paderborn.de

Abstract

In this paper, a nontrivial stationary solution for a stochastic neural
network with delay is studied. The analysis is done in the context of the
theory of random dynamical system and the idea of M-matrices.
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1 Introduction

The analysis of neural networks is an interesting and very important
mathematical field due to its wide range of applications. They include, for
example, the construction of artificial intelligence, models for neurobiology and
image recognition. Many of those applications can be described by a neural
network that was introduced in [4] by Micheal A. Cohen and Stephen Grossberg.
It is referred to as Cohen-Grossberg neural network. In this article we consider
the neural network with delay of the form

dﬂl‘i
dt

(t) = —cii(t) + Z aij fi(x;(t)) + Z bijg;(x;) + Li(t) (1)

for i = 1,...,n and ¢ > 0 (cf. [7]) with initial condition x;(t) = &(t) for
t € [=h,0] with A > 0. The whole mathematical background will be given in
the next section. As described in [7], n denotes the number of neurons in the
network and x;(t) the state of the ith neuron at time ¢. The functions f; and
g; are called activation functions of the jth neuron. I;(t) is the external bias
on the ith neuron at time ¢. a;; and b;; represent the connection weight of the
jth neuron on the ith neuron and c¢; denotes the rate with which the ith neuron

I thank the referee for very valuable comments which helped me to improve this paper.
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will reset its potential to the resting state in isolation when disconnected from
the network and external inputs.

In this article we are interested in equilibrium states of such a network.
These states play an important role in the behavior of neural networks which
can be represented clearly by using the example of image recognition: Some
kind of input stimulates neurons that pass on the stimulations until the neural
network evaluates to a stable state (the output) that should represent the input.
In our case the input is, for instance, a blurry picture which is transformed to
its sharp original by the network. Thereby the original picture represents the
equilibrium state.

One can imagine that the forwarding of the stimulations can be randomly
influenced. That is the reason why we consider a stochastic neural network, i.e.
we replace the external bias by white noise (cf. [10]), so that (1) becomes

dai(t) = |—cmi(t) + D aij fi(z;(8) + Y bijgs(@h) | dt+ dWi(t)  (2)
j=1 j=1
where W; is a two-sided Wiener process for ¢ = 1,...,n defined on a probability

space that will be introduced in section 2.3. Our intention is to investigate the
dynamics of such a system with respect to the theory of random dynamical
systems in which equilibrium states are represented by so called random fixed
points. The main goal of this article is to find such a fixed point in the pathwise
sense rather than in the mean square sense (cf. [10]).

When dealing with delay differential equations one often assumes a condition
to estimate the delay by a term which is independent of that delay (cf. [3, p.
275] and the citations therein). We try to overcome such an assumption by
using the concept of M-matrices and a general Gronwall inequality which is
based on the so called Halanay inequality (cf. [5, p. 378]).

2 Preliminaries

2.1 Random dynamical systems

In this paper we need some basic definitions concerning the theory of random
dynamical systems (RDS) such as, for example, the concept of temperedness
and random fixed points. But due to the interest of brevity we refer to [3, pp.
282-283| where all of these definitions have been introduced.

2.2 M -matrices

We denote by Z™*™ the class of Z-matrices which consists of matrices with
nonpositive off-diagonal elements. In particular, we are interested in nonsingular
M-matrices which are elements of Z™*". As described in [2, p. 132], M-matrices
often occur in physical and biological science and, for example, play a role in
finite difference methods for PDEs and in Markov processes.
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For convenience we introduce the notation |M| = (||m;|g)i,; for a matrix
M = (myj);,; with real-valued entries where ||-||p denotes the absolute value of
a real number. Furthermore, we interpret the notation A < B resp. A < B
for two matrices A = (ai;);; and B = (b;;);,; componentwise as a;; < b;; resp.
A5 < bij for all Z,]

Definition 1 A € Z™*™ is called a nonsingular M -matriz if there exists a
vector x > 0 such that Ax > 0.

The concept of M-matrices will be used below to prove a generalized Gronwall
lemma which is the main ingredient to show the existence of a stationary
solution to the neural network.

Remark 1 There are a lot of equivalent definitions for matrices to be a M-
matriz. 50 of them can be found in [2, pp. 134].

2.3 Stochastic neural network

We are given a probability space (Q2, F,P). The R”-valued two-sided Wiener
process W = (Wy,...,W,)" generates a canonical probability space where
is the space Cy(R,R™), which consists of continuous functions that are zero at
zero, F the associated Borel-o-algebra with respect to the compact open topolgy
of the Fréchet space ) and P the Wiener measure. The metric dynamical
system (cf. [3, p. 273]) is defined by the so called Wiener shift operators
Oy : Q2 — Qw — w(-+1t) —w(t) for t € R, w € Q. Notice that P is ergodic w.r.t.
0. What we have introduced is called the Wiener space.

We want to denote the neural network (2) in a more comprehensive vector
form. We denote by C([—h,0];R™) the space of continuous functions from
[—h,0] into R™ equipped with the supremum norm. For j =1,...,nand t >0
the function zf € C([—h,0];R) is defined by 2%(s) = z;(t + s) for s € [~h,0].
By using the notations

o a(t) = (z1(t), ..., za(t)", () = (E1(t),- .-, &n(t) T,
W(t) = (Wl(t)a ceey n(t))—r
o A= (aij)ij=1,..n B=(bij)ij=1,..n, C=diag(ci,...,cn)

o fa(®) = (filzi(®),., fulzn(®))T, g(a") = (g1(24), ..., gn(z})) T

we can rewrite (2) into the vector form

{dx(t) = [~Ca(t) + Af(x(t)) + Bg(a)]dt + AW (t) ,t>0 )

x(t) = (1) ,t € [—h,0].

We assume c¢; to be a positive constant and a;;, b;; to be nonnegative constants

for ¢,7 = 1,...,n. In addition, we suppose the operators f : R® — R" and
g : C([—h,0];R™) — R™ to satisfy the Lipschitz condition, i.e.
f(u) = ()] < LT ju —of for w,veR",

l9(x) — g(y)| < L)z — y|c([7h,o];Rn) for z,y € C([-h,0;R")
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where

-
elenaom = 5w o= (5w JnGl sw o))
—h<s<0 —h<s<0 —h<s<0
for x € C([—h,0;R™).

For a pathwise investigation of the neural network we transform the
stochastic differential equation (SDE) into a random differential equation
(RDE). Using the stationary solution (w,t) — 2*(6;w) (known as the Ornstein-
Uhlenbeck process or OU process) of the SDE dz(t) = —Cz(t)dt + dW (t) we
can rewrite (3) into the RDE

{u(t) = —Cu(t) + Af (ut) + 2*(61w)) + Bg(ul + (0. w)) ;£ > 0 @

u(t) = &(t) — 2" (Brw) = p(t) ,t € [=h,0]
with u(t) = z(t) — 2*(0sw). We define

F:C([~h,0;;R™) — R™, z'+ Af(z"(0) + 2*(6;w)) + Bg(x" + 2" (0.14w)).
As a result of

[F(a') = F(y")]

IN

ALY [o(t) = y(&)| + BL|2" = 'l oy

< ALY sup |z(t+s) —y(t+s)| + BLIz' — yt|c([7h OJ:R™)
—h<s<0 o

= (ALY + BL)|z" — 4| _n.ojmm)

F is Lipschitz continuous. In addition, u — (¢, w, 1) is continuous (cf. (12)).
Hence there exists a unique solution to (4) which generates an RDS ¢ given by

¢ 1R x Qx C([h, 0 R") — C([=h, 0k R"),  (t,w,p) = u'(w,1)  (5)

fort >0, w € Q and p € C([—h,0];R™) (cf. [3, p. 286]).

3 Stationary solution

Gronwall’s lemma resp. inequality plays an important role in many topics
studying the qualitative behavior of differential equations. We will use a special
kind of such an inequality which we call generalized Gronwall inequality. Tt
is mainly based on the Halanay inequality introduced in [5, p. 378]. A
generalization can already be found in [9, p. 111]. However, the inequality
to the generalization presented below is extended by a function added to the
right handside which is why refer to it as the strong version. The generalization
in [9] will be called the weak version.

We recall that the inequalities are to be understood in the componentwise
sense. DT denotes the usual Dini derivative and E the n x n identity matrix.
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Lemma 1 (Generalized Gronwall lemma) Let P = (p;;) with p;; > 0 for
i # jand Q = (¢i;) > 0 be two n x n matrices such that —(P + Q) is a
nonsingular M-matriz. Consider T > 0 and assume that u € C([0,T];R"™)
satisfies the differential inequality

DT u(t) < Pu(t) +Q sup u(t+s) + diag(Ki, ..., Ky)v(t), t>0 (6)
<s<0

where v is a nonnegative function, the initial condition u € C([—h,0]; R™) fulfills
p(s) < Ke for se[-h,0]. (7)
K= (Ki,Ky,...,K,)" >0 and A > 0 are determined by
(P+ Qe+ AE)K < 0.

Then we have
t

u(t) < Ke M + diag(K1, . . ., Kn)/e_)‘(t_r)v(r) dr  for t>0. (8)

0
Proof. Since —(P + Q) is a nonsingular M-matrix there exists a constant
vector K = (Ki,Kas,...,K,)" > 0 such that (P + Q)K < 0. Hence, by

continuity, there is a constant A > 0 with (AE + P + Qe*")K < 0.
Next we want to show that for any ¢ > 0 it holds

ui(t) < Kie ™ + K; /e”‘(t*r)vi(r) dr =: ®,(t) for i=1,....,n. (9)

Assume that (9) is false. Then there exist t* > 0 and m € {1,...,n} such
that w, (t*) > @,,(t*). Because of (7), the continuity of v and the nonnegativity
of v there also exists a tg > 0 such that u,,(tg) = ®,,,(to) and

Dy, (to) > DY@, (to). (10)

In addition, we can choose ¢ such that for all < € {1,...,n} it holds u;(t) < ®;(¢)
for t € [—h,to]. This is justified by (7) once again. Note that the last inequality
implies sup_, <« <o wi(to + 8) < sup_pc,<o @i(to + s) for i € {1,...,n}. But
then we also have o

D+U/m (tO)

Z {pmﬂh (t()) + Gmi SUp uz(tO + 3)} + Kmvm (tO)
1 —h<s<0

7
to

pmiKie_MO"‘pmiKie_)\tO/e "vi(r)dr + gmiK; sup {e_k(tws)}
—h<s<0

-

K3

1 0

+gmii  sup e’*(t"“)/e”vi(r)dr + Ko (to)
—h<s<0



138 A. Ogrowsky

n to
<Y S pmiEie M 4 p e /e”vi(r) dr + gpi K Mo~
i=1 i
to
—|—qmiKie_A(t0_h) /e)‘rvi(r) dr + Kmvm(to)
0
n to
= Z (Pmi + qmie™") Kie™ 0 + (ppmi + gmic™") Kie™ M0 /e’\rvi (r)dr
i=1 0
+ Kmvm (tO)
to
< (=N EKpe Mo 4 (N K e Mo /e”vm(r) dr + K, (to)
0
to
= MK, | e Mo 4 ¢ Mo /e”vm(r) dr | + Kpnom(to)
0
= —/\‘I)m(to) + Kmvm(to)
=D"®,,(ty)
which contradicts (10). Hence (9) is true and the lemma is proved. O

Remark 2 If we replace v(t) in (6) by diag(K;",..., K, o(t) the diagonal

n

matriz in (8) can be taken as the identity matriz. Hence the lemma above is
still valid if we think of the term diag(Ky,...,K,) in (6) and (8) to be the
identity matriz.

Next, we prove that two solutions to (4) approach each other exponentially
fast as the time tends to infinity. We denote

lall = max ( sup ||xi<s>||R)-
1=1,...,n —h<s<0

Note that [|-| is equivalent to the norm in C([—h, 0];R™) given by ||-[|c(;_4 0.z
= SUP_p<s<o ”(S)H]R"

Lemma 2 Let 4 and 4 be two solutions to (4) with initial conditions i resp.
fi and assume that —(L'|A| + LI|B| — C) is a nonsingular M -matriz. Then it

holds
a(t) —a(t)| < i — plle MK

for t > —h where ¢ is a constant and K and )\ are given by Lemma 1.

Proof. We denote by Au(t) and Ap(t) the difference between the two
solutions and initial conditions, respectively. We need to show the assumptions
(6) and (7) to apply the generalized Gronwall Lemma.
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Step 1: Let ¢t > 0 and sgn denote the usual signum function. For Au(t) # 0 it
holds

D (0] = sn(Au(0) 2 (1)

< =ClAu)] + [Allf(a(t) + 2" (0:w)) — f(a(t) + 2" (0w))]
+|Bllg(@’ + 2" (0.41w)) — g(a@’ + 27 (0.44w))|
< (L714| - O) |Au(t)| + LY|B] _sup |Au(t + s)]

and for Au(t) = 0 we derive (cf. [6, p. 87])

DT |Au(t)| < LIB| sup |Au(t+ s)|
—h<s<0

based on the continuous trajectories of the OU process (cf. [3, p. 285]). Hence
condition (6) is fulfilled.
Step 2: For t € [—h,0] we have

i=1,...,n

Au(t)] < max ( sup |Aui<s>||R)13c||Au||e—”K (1)
—h<s<0

where 1 := (1,...,1)T and ¢ = m > 0. Hence assumption (7) is
satisfied whereby K is replaced by c||Ap|| K.
Therefore we can apply Lemma 1 (in its weak sense) and receive |Au(t)|

<
c|Aplle K for t > 0 which is also true for t > —h since (11) holds. O

In particular, we have ||Au;(t)|g < c|Aplle ™ K; for i € {1,2,...,n} and
t > —h. Hence sup_, ;<o || Aui(t + 5)||p < cf|Aplle MK, for t > 0. Taking
the maximum on both hand sides and defining C' = ceM max;—1,. n K; yield
|[Aut|| < C||Ap|le=t. Due to the definition of the RDS given in (5) we get

[8¢(tw, w)l| < CllAplle™". (12)

Now we can show the existence of a nontrivial stationary solution to the neural
network.

Theorem 3 Assume that —(Lf|A| + LI|B| — C) is a nonsingular M -matriz.
Then the neural network (4) has a unique exponentially attracting random fized
point u*(w) where ||u*(w)|| is tempered.

Proof. The proof follows the method described by Schmalfuss (cf. 8, pp. 95—
96]). We do not give the full details here but note that the existence of a Cauchy
sequence is based on (12) and similar calculations used in the proof of Lemma 2.
We emphasize that for these calculations, however, we need the strong version
of the generalized Gronwall lemma. In addition, the temperedness of the OU
process w.r.t. C([—h,0];R) is necessary. It bases upon the temperedness of the
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OU process w.r.t. to R (cf. [3, pp. 284-285]) and is therefore shown by

log™ ||Z;(9tw)||c([—h,o],R) B log™ SUP_p<s<o 177 (Os+ew)|Ig

= lim
{00 t]x t—+oo tllg
i log™ [127 (05, () 4+9) I l|50(t) + tllg
= lim =0
t—Foo [[s0(t) + g [tllr
—0 —1
where i € {1,...,n} and so(t) € [~h, 0] is defined by sup_j, ;< [|2] (0s1+w)[|p =
||z;‘k(050(t)+tw)||]g' U

Remark 3 Due to the stationarity of the OU process a similar result is valid
for the SDE (3). This can be shown by transforming the solution to (4) back.
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Abstract

We study a version of the inverse problem of Calculus of Variations in
the context of Vakonomic Mechanics.
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Variations
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1 Introduction

The classical inverse problem of the Calculus of Variations consists in finding
conditions under which a given system of differential equations derives from a
variational principle. The origins of this problem date back to Helmholtz ([5]),
in the end of the 19th century, who sought new applications of the powerful
Hamilton-Jacobi method to integrate the equations of Mechanics. Two major
contributions to solve this problem were made in the last century: the first, by
Douglas in the 1930s in his classic paper ([3], [4]); the second, in the 1980s,
by Vinogradov ([14], [15]), Tulczyjew ([13]), Anderson ([1]), Tsujishita ([12]) ,
among others (see references in [1]), who geometrized the problem through the
introduction of the so-called variational bicomplex. That is a double complex
of differential forms in a Fréchet manifold of infinite jets of sections of a fibered
manifold, one of the coboundary operators of which is the classical Euler-
Lagrange operator of the Calculus of Variations.

We consider a variation of this problem related to Vakonomic Mechanics:
given a smooth finite dimensional manifold M and a system of mixed first-
and second-order differential equations, we study conditions under which
these equations are the Vakonomic equations induced by a non-autonomous
Lagrangian L defined on R x TM.

This work is developed in [8].

141
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2 Notations and Definitions

In this section we fix some notation for jet bundles and we define the variational
bicomplex on the bundle of infinite jets of sections of a fibration. We
particularize the definitions for a fibration = : E — R over R, where E is a
smooth n-dimensional manifold. The reader is referred to [9] and [1] for more
details on the bundle of infinite jets and the variational bicomplex.

For all k € N, 7, : JF7 — R denotes the bundle of k-jets of sections of 7
and, for 0 < I < k, m,; : J*7 — Jlr denotes the natural projections (where
JOm = E). We call 7 the source projection and ¢ the target projection of
the 1st jet bundle J'm. Let (t,u®)1<agn be coordinates on an open set U C E
adapted to the fibration E — R. This coordinate system induce coordinates
(t,ua))magn,ogigk on Uk = 77,;51/{ c JEr. We use the notation 4 = “?1) and
e = u?‘2), so that (¢, u”, 4")1<a<n and (¢, u®, 4%, 1) 1<agn are coordinates on
U' C Jir and U? C J?7, respectively.

Let s: I C R — E be a smooth section of 7. Given ¢ € I, we denote by ji° s
the equivalence class of all sections of 7 defined on a neighborhood of ¢ whose
derivatives of all orders at ¢ coincide with that of s. Such an equivalence class is
called an infinite order jet. We denote by J°°m the Fréchet manifold of infinite
order jets of sections of 7; it is a smooth manifold modelled on the Fréchet
space R™. We denote by (Vk € Z1) moo i : T — Jir and 7o : J°7 — R the
natural projections. The chart (t,u%)i<a<n on U C E adapted to the fibration
E — R induces a chart (,uf}))1<a<n,0<i<oo 0D U™ = 7r;o1702/{ C Joom.

We say that a smooth function on J°°7 has order k € Z if it is the pullback
by Teok Of a smooth function on J¥7. We say that a smooth function on J®m
is of finite order if, for some k € Z., it has order k. Differential forms on
J*°m of finite order are similarly defined. In this paper, all smooth functions or
differential forms on J*7 are assumed to be of finite order.

There exists a natural bigrading on the R-vector space of differential forms
on J®:

Q*(JOOTI') = ) Qi,j(Jmﬂ').
0<i<1,0<j<o0
A differential form belongs to €2; ;(J°°7) if, locally, on the charts described
above, it is a sum of terms of the form fdt’ A 5“?131) Ao A 5u?,jj), where f is

a smooth function on J*7 and 5u?‘j) = du?‘j) — u?jﬂ)dt. Such a form is said
to be of type (i,7), or i-horizontal and j-vertical. Given w € Q; ;(J®n), its
exterior derivative dw belongs to Q11 ;(J®°m) & Q; j+1(J°°7); we denote by dnw
its projection on the first factor and by d,w its projection on the second one.
We extend dy, and dy to .(J°°7) by linearity; dy, is called horizontal derivative
and dy is called vertical derivative. They are both anti-derivations on €2, (J°°)
of degree +1 and satisfy dp? = 0, d,? = 0, dydy = —dydy. Therefore, for each
fixed i we obtain a cochain complex (Qi,j(JOOW),dv)j>0 — the columns of the
so-called wariational bicomplex — and for each fixed 7 we obtain a cochain
complex (Qi,j(Joow),dh)@O — the lines of the variational bicomplex. The

horizontal and vertical derivatives can be easily computed in coordinates: if
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f=ft,ue, u?‘l), . ,u?k)) is a smooth function on J®7, we have:

dnf =D¢fdt
n k

of < o
def =) 55— ou,

a=1 ;=0 (4)

where Dif = % + >, E?:o %é_) uf;yy is the total derivative of f;
moreover, d,dt = 0 = d,dt and dh5u?‘k) =dt A 5“?;@)’ dv5u?‘k) =0.

The differential forms in O ¢(J>°7) are called Lagrangian forms. In
coordinates, a Lagrangian form may be written as L d¢, where L is a smooth
function on J*°7; the Lagrangian is said to be of order k if L is of order k,
ie. if L = L(t,uo‘,u‘(j‘l), . ,u‘()‘k)). Such a Lagrangian induces a functional
on compactly supported smooth sections of m: s +— [,(j*°s)*Ldt. A smooth
section s of 7 is said to be an extremal of the functional induced by Ldt if, for
any compactly supported variation s, of s, we have % o Jz(G% s-)*Ldt = 0.
A necessary and sufficient condition for s to be an extremal of the functional
induced by Ldt is that the Euler-Lagrange form Qp, of L be null along j* s.
The Euler-Lagrange form €y, is a form in ©y ;(J°°7) which, in coordinates, is

written as:
n

QL= Ea(L)6u® Adt, (1)
a=1
where E, (L) = Y1 (=Dy)’ 6(2;1;.) for a Lagrangian of order k.

For s > 1, we call the quotient F*(J®m) = O s(J®°7m)/dnQ,s(J°)
space of type s functional forms. It may be identified with the subspace of
Q,5(J°°7) which is the image of the interior Euler operator I : 4 4(J®°7) —
Q1,,(J°°7). In coordinates, we have I(w) = 1 Y"  Su® A Fo(w), where
Folw) = ZLO(—Dt)i[du?’i)Jw] if w has order k. For s = 1, a differential
form in Q4 1(J®n) is a type 1 functional form, also called a source form, if,
and only if, it is locally of the form Y _, P,dt A du®, where the P,’s are
smooth functions on J*7. Thus, from (1), the Euler-Lagrange form associated
to a Lagrangian is a source form, i.e. it belongs to F(J*n). We think of a
source form w € F1(J°°m) of order k as an intrinsic definition of a system of n
differential equations of order k; its solutions are the sections s of 7 such that
w vanishes along j*° s.

The spaces F? are part of a cochain complex, the so-called Euler-Lagrange
complex of the fibration 7 : E — R:

0—>R—>QQ7O&>QLO£>.F1L}—2L--- (2)

where E is the Euler operator Ldt +— Qp given by (1) and §, : F¢ — Fitlis
the vertical derivative induced on functional forms, given by §, = I o d,.
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3 Vakonomic Mechanics

We denote by € : R x M — R the trivial bundle and & : J'¢ — R its first
jet bundle, which is identified with R x TM, where 7y : TM — M denotes
the tangent bundle of M. We consider a smooth time-dependent Lagrangian
L : JI¢ — R and a smooth vector sub-bundle IT : 2 — R x M of the target
projection &9 : R x TM — R x M (which stands for the reonomic linear
constraints) and we denote its annihilator in R x T*M by II* : 2+ — R x M.
We denote by 7 : 2+ — R the natural projection. We call (M, 2, L) a (linearly)
constrained mechanical system. We say that a smooth sectiony : I C R — RxM
of € is compatible with & or horizontal with respect to 9 if its prolongation j' ~
lies in 2. There are two natural approaches to formulate equations of motion for
constrained mechanical systems yielding solutions which are compatible with Z:
(1)nonholonomic mechanics (see [7], [6], [L0] and references therein), known as
“mechanics of the straightest paths”, based on d’Alembert-Chetaev’s principle;
(2) Vakonomic Mechanics(see [2], [7], [6], [11] and references therein), known
as “mechanics of the shortest paths”, based on the Hamilton’s principle of the
stationary action. A particular case of the latter is the so-called sub-Riemannian
geometry.

We shall briefly recall how the equations of motion in Vakonomic Mechanics
are formulated and we show how these equations may be obtained as the Euler-
Lagrange equations of a modified Lagrangian . defined on J'7, the total space
of the first jet bundle of 7 : 2+ — R.

The action functional induced by L on compactly supported sections ~ :
I R — RxMof & I an open interval, is defined by v — [, L ojly. We
say that a section v : I C R — R x M of 7 is a vakonomic trajectory of
(M, 2,L) if it is a critical point of the action functional on compactly supported
variations of v compatible with . By a compactly supported variation of
we mean a smooth map I' : (—0,0) x I — R x M such that, for all s € (—4,9),
[y =T(s,"): I — RxMis asection of {, 'y = v and there exists a compact set
K C I such that for all s € (=9, ) and all ¢ outside K, () = v(t); we say that
such a variation is compatible with Z if, for all s € (=4, d), I'; is compatible with
2. There are two types of vakonomic trajectories (see [6], [11]): the normal,
which are associated to a certain system of Euler-Lagrange equations, and the
abnormal, which correspond to the critical points of the so-called endpoint map.
We propose the following characterization of the normal vakonomic trajectories:

Proposition 1 Let £ : J'm — R be defined by:
it © = L(jg ) + (©(),J¢ 1), (3)

where y = I1*0O and (-, -) is the canonical pairing between Rx TM and Rx T*M.
Then the normal vakonomic trajectories are projections on RxM of the solutions
of the Euler-Lagrange equations of £ .

Definition 1 We say that L is P-regular if FL|g : 2 — 2% is a local
diffeomorphism (where FL denotes the fiber derivative of L, i.e. VY (t,v4) €
R x TM,FL(t,vq) = D(L|rxT,m)(t,v4) € R x T;I\/l).
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Definition 2 The mixed bundle is the Whitney sum Z ©rxm D+, We define
F: ' @pum 2+ = RXT*M by (v,0)(1,4) — FL(v) + O and F = Flga, ,, - -

It is an immediate consequence of the above definitions that L is Z-regular
if, and only if, F' is a local diffeomorphism. Let @ be the canonical contact form
on R x T*M, 0, = F 0, wy, = —dfy, + dt A dH, where H: 2 @rem 2+ — R is
given by (v,0)(,q) + L(v) — FL(v) - v. Then, if L is Z-regular, (wr,d?) is a
cosymplectic structure on 2 Grxm 2+, where dt is the canonical volume form
on R. Moreover, we have the following;:

Theorem 2 If L is P-reqular, the normal vakonomic trajectories are in
1-1 correspondence with the integral curves of the Reeb vector field of the
cosymplectic structure (wr,, dt).

Remark 1 This is a generalization of the well known fact that, in the
autonomous case and under the same reqularity hypothesis, the normal
vakonomic trajectories are integral curves of a Hamiltonian vector field (see

[6]. [11]).
4 The Inverse Problem

Let 7 : 2%+ — R be as in the previous section and (t,q")1<;<n be coordinates
on an open set R x ¢/ in R x M, where n = dimM. Let (6%)i<a<n—r be a
basis of 9L|qu, where k = rk 2. Let (¢,q%, o) be the induced coordinates on
9P+ |rxu. This coordinate system induces, as described in section 2, coordinates
ianw,lgkgoo.

We consider a source form  on F*(J°°7) of order 2 which, on the coordinates
above, is of the form:

> " Pi(t.q',d' ' Aoy Aa)Oqt AdE+ > 02 6N Adt, (4)
o - /pa O
where 01 = <9 xra >

Definition 3 With the notation above, we call Q a P-source form. The integral
curves of ) are the sections © of w such that ) vanishes along j°° ©.

Proposition 3 The definition above is intrinsic, i.e. independent of the
coordinate system.

Proof. Let (t,3')1<i<n be another coordinate system on R x U C R x M; we
assume these coordinate systems to be related by (¢,q") — (t,ql(ql, . 7q”)).
Let (ga)lgagn,k be another basis of 2 |gy; we assume 7" = Zﬁ AgGB, where
Af = Aj (t,q) is a smooth function on R x U for 1 < «, f < n — k. The matrix
A = (Aj) is, then, invertible. Let (t,%, A\o) be the induced coordinates on

9L|qu- This coordinate system induces coordinates in J*r, 1 < k < co. A
direct computation then shows that, in this new coordinate system, €2 given by
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(4) transforms into ), ?i(t,qi,ﬁ,j,xa,ja)éqi Adt+32, ??#(ﬁa Adt, where
0; = (0", 2 ) and:
an =B o aAZ[ _

o+ Y 70 (ATE—— X (5)
07 Jra, By 07

?i(tqia? 7617XQ7XO¢) = ZPJ
J

O

Note that, if © is an integral curve of €2, then the projection of © on
R x M is compatible with 2 and, locally, © : t — (t,¢'(t), Aa(t)) in the above
coordinates is a solution of the system of mixed first- and second-order equations
-Pi(ta qia q.ia dia Aas )\a) = 0.

We now consider the following problem: to find necessary and sufficient
conditions for a given Z-source form 2 to be the Euler-Lagrange form of a
Lagrangian of the form (3). If that is the case, the integral curves of ) are the
solutions of the Vakonomic equations of the Lagrangian L.

Definition 4 We say that a Z-source form ) is 2-l-affine if, written in
coordinates as (4), for 1 <1 < n: (i) the functions P; are affine in the variables
. 1<k<nand My, 1 <a<n—k; (i) gf;ﬁ is a function of (t,q,q) and gfﬁ
is a function of (t,q).

It follows from (5) that the above definition does not depend on the
coordinate systern.

Definition 5 Let Q) be a Z-source form. We say that © is a locally variational
P-source form if, locally, it is the Euler-Lagrange form of a Lagrangian of the
form (3). We say that Q is globally variational if the latter condition holds
globally on J>®m.

Our main results are stated in the following theorems: in the first one we
describe the Z-source forms which are locally variational; in the second one we
show that the topological obstruction for a locally variational Z-source form to
be globally variational lies in H2(M).

Theorem 4 Let Q) be a P-source form. Then ) is locally variational if, and
only if, Q is 2-1-affine and 6,2 = 0, where 0, is defined in (2). In coordinates,
if Q is given by (4), the latter condition reads:

oP;, P, OP, ., 0P,
= 1 Dyer + D2
aq’ dqi taq'J + C g
oP; P, P,
=L =1 _9p, L
o¢ o "oy
oP; 0P,
i’ B 07 (6)
6% , .
o0k
T 9 @ 0o
g 0P

)W
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Theorem 5 If H>(M) = 0, every locally variational Z-source form is globally
variational. On the other hand, if H*(M) # 0, there exist locally variational
P-source forms which are not globally variational.
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This paper gives a recent results on extinction in nonautonomous
Kolmogorov systems.
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1 Introduction

It is well known that the long-term coexistence problem of species is a basic one
in population dynamics. One of the famous models for dynamics of population
is the Lotka - Volterra competition system

N
up =i | ai(t) = > bius(t) | (LV)
j=1

where a;,b;; > 0. Gopalsamy [2], [3] and Alvarez and Tineo [8] showed that if
fori=1,...,N

N
aiL, >ZM for 1=1,...,N
= i
J#
where g7, (resp. gas) denotes the infimum (resp. the supremum) of the function
g, then system (LV) is permanent and globally attractive. In [1] Ahmad
and Lazer showed that permanence and global attractivity hold under weaker
conditions, which they called average conditions or conditions A. The authors

applied the notion of the upper and lower averages of a function; namely,

m[g] := liminf

1 t
fimint = [ g(r)ar,

149
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1
M]g] := limsup P g(T)dr.

t—s—00 S Js

With the help of the upper and lower average of a function they obtained a
condition which guarantees the permanence and global attractivity in a Lotka
- Volterra system. The average conditions for system (LV) are

N
bijae Mlaj)

for 1=1,...,N
bjsL

mla;] >

j=1

J#i
At the same time Francisco Montes de Oca and Mary Lou Zeeman dealt with
extinction (see for example [4]). They considered competing system (LV), where
a;,b;j: R — (0,00) are continuous functions bounded by positive reals. In [4]
they gave algebraic criteria on the parameters which guarantee that all but one
of the species are driven to extinction; namely, for each k > 1 there exists i, < k
such that for any j < k the inequality

ararbig i < biyLakjr (E)

holds. They proved that under conditions (E) the species us, ..., uy are driven
to extinction whilst the species u; stabilizes at the unique bounded solution uj
of the logistic equation on the w; axis. Moreover, they showed convergence of
trajectories to uj.

For each » < N, let H" denote the r - dimensional coordinate subspace on
which x,41,...,2x vanish. We use the variable v to denote the restriction of
system (LV) to H",

’U;(t) = Ui(t) <a¢(t) — Z bij (t)’Uj (t)) s 1= 1, P AN (LV)T

In [4], Montes de Oca and Zeeman showed that given r < N, if for each k& > r
there exists i, < k such that for any j < k the inequality

N
aip > Y biju <%—M)

= bjjr
J#
holds, then the system (LV), has a unique bounded strictly positive
solution v*(t) = (vi(t),...,v:(t)) and every other positive solution wu(t) =
(ui(t),...,un(t)) of system (LV) has the property that
tlirgo(uj(t) —vi(t) =0, j=1,...,m

tlim uj(t)=0, j=r+1,...,N.

In this paper we present results which we proved in [5, 6, 7].
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We consider an N- species nonautonomous competitive Kolmogorov system
wi = u; fi(t, ) (K)
on the nonnegative cone
C={u=(u1,...,un):u; 20,1<4,j <N},
where

(1) f=(f1,..-, fn) :[0,00) x C — R¥ together with its first derivatives gf:j
are continuous,

(2) for each compact C C C, af . (t u) are bounded and uniformly continuous

on [0,00) x C' with respect to u,

(3) there exist agl),a?) > 0 such that agl) < fi(t,0,...,0) < al@), t >
0, 1<i<N,

(4) gj;(t,u)go,forall t>0ueC, i,j=1,...,N,

(5) there exist bl(.i > 0 such that afi (tu) < b( forall t>0, ueC, i=
1 N.

geeey

Definition 1 A solution u(t) of system (K) is positive if u;(t) > 0 for allt > 0.

2 Preliminaries

We begin with the following result.

Lemma 1 Ifu: [tg, Tmax) — C, to = 0, is a mazimally defined positive solution
of (K) then

(1) Tmax — OO,

o®
(il) limsup,_, . u;(t) < b(l) fori=1,...,N.

Proof. See for example [5, 6, 7].

(2) (2)
AT fl]
b byn

b2 .— —inf{a—fi(t,x) 120, z € B}.

Define
B =

Assumptions (2) and (4) guarantee that 0 < bg) < oo. Further, define
aV = min{a(l) ci=1,...,N},
b3 = max{b(z) ci,j=1,...,N}.
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Lemma 2 There is 0 > 0 such that if u(t) = (u1(t),...,un(t)) is a positive
solution of (K) then

N
lim infz ui(t) = 0.

t—o00

Proof Proof. See for example [5, 6, 7).
O

Definition 2 System (K) is permanent if there exist positive constants v and
U such that for each positive solution u(t) = (u1(t),...,un(t))of (K) there is
T > 0 with the property v < u;(t) < U for each t > T.

Define the lower and upper averages of a function g which is continuous and
bounded above and below on [0,00). If 0 < ¢t < s we set

1 t
= S/s g(T)dr.

The lower and upper averages of g denote by mlg] and M|g] respectively are
define by

Alg, t,s] =

m[g] := liminf Alg, 1, s],

t—s—o00

M]g] := limsup Alg, t, s].

t—s—00

In [5] we proved that if

N b Mf o...o
m[fi(-,0,. >Z by : )], for i=1,...,N.

JJ

then system (K) is permanent and globally attractive.

3 Main Results

In [6] we introduced average conditions which insure that all but one of the
species are driven to extinction.

Theorem 3 Assume that for all k > 1 there exists i, < k such that for all
J<k
1
M{fi(-0,...,0)] by
mlfi, (0,...,0)] " @

If u = (ui(t),...,un(t)) is a positive solution of (K) then for alli=2,...,N
ui(t) = 0 ast — oo
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See Theorem 1 in [6].
Denote by Ui (t) a fixed positive solution of

Ui(t) = Ur(t) f(t, Ur(1),0,...,0)

It can be proved that Uy (¢) is defined on [0, 00), bounded above and below by
positive constants, and globally attractive.

Theorem 4 If u(t) = (ui(t),...,un(t)) is a positive solution of (K) then
up(t) — Ui(t) as t — oo.

For the proof see Theorem 2 in [6].

In [7] we showed that for any r < N the average conditions guarantee that
r of the species in system (K') are permanent while remaining N — r are driven
to extinction.

Theorem 5 Let r be a given integer with 1 <r < N. Assume for any k > r
there is an i, < k such that for any j < k

(1)
m[flk(70770)] b(z)

ik

holds. If u = (ui(t),...,un(t)) is a positive solution of (K) then for all i > r
u;(t) — 0 exponentially as t — oo.

For the proof see Theorem 1 in [7].

Theorem 6 Suppose that all the conditions of Theorem 3 hold. Assume that
m | fi(t,0,...,0) =Y bPU;t)| >0, for i=1,...,r (M)

where Uj is a positive solution of the equation

Ul(t) = U(t) ( £i(£,0,...,0) — bg.;)Uj(t)) .

Then there exist 7 > 0 and v > 0 such that for each positive solution
u(t) = (ui(t),...,un(t)) of system (K) there exists T > 0 such that

N

v<uw(t)<T for t=T and i=1,...,r

For a proof see Theorem 2 in [7].
Denote I = {1,...,7}.
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Theorem 7 Suppose that all the conditions of Theorem 3 hold. Assume that

there exist positive constants p1,...,pr > 0 and e > 0 such that for j =1,...,r
2
pJ J] Zplb(')>6
#J

Ifu(t) = (u1(t), ..., un(t)) is any positive solution of (K) and u(t) = (u1(t),...,
u,(t)) is any posztwe solution of subsystem

w, = u; fi(t,u), i€l

then
lim |u;(t) —a;(t))=0 j=1,...,m

t—o0

For a proof see Theorem 3 in [7].
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Abstract

Pullback attractors are important elements to study the asymptotic
behaviour for nonautonomous PDEs because they copy the pullback
dynamic of the system inside them. Although pullback and forward
dynamic may not be related, there exist some cases when the trajectories
converge forward in time to the pullback attractor. In this work we prove
how the pullback attractor copy the forward dynamic in these cases.
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1 Introduction

One of the central problems in dynamical systems is the study of the
asymptotic behaviour of evolution processes associated to the modeling of
real world phenomena. When the model under study is an autonomous
differential equation, the asymptotic behaviour is rather well established and
many references on the subject are available (cf. Temam [16], Hale [10],
Ladyzhenskaya [12], Babin-Vishik [1], Robinson [14] for example). However, if
the evolution process comes from a nonautonomous differential equation, even
though some nice references are already available ((cf. Cheban [7], Chepyzhov-
Vishik [8], Kloeden [11], Sell-You[15], Caraballo et. al. [2]), much is yet to be
done.

In general, a nonautonomous system shows two different dynamics without
relation between them: forward dynamic (the behaviour when final time goes
to infinity) and pullback dynamic (the behaviour when the initial time goes to
minus infinity). An interesting task concerns the analysis of the case in which
both kinds of attraction take place. Our aim is to show how the pullback
attractor copies the whole dynamic in this case. To do this, we will use
the framework of evolution processes, because we can identify the solution of
problems with this kind of families.
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Definition 1 An evolution process in X is a family of maps {S(t,s) :t > s} C
C(X) with the following properties

1) S(t,t) =1 for allt € R,

2) S(t,s) =S(t,7)S(r,s), forallt =1 > s,

8) {(t,s) eR?*:t> s} x X 3 (t,s,2) — S(t,s)x € X is continuous.

Since a fixed set A in X will not, in general, remain fixed by a
nonautonomous process, invariance for an evolution process is defined as:

Definition 2 A family of nonempty sets {B(t) : ¢ € R} is invariant under
{S(t,s) : s <t} if S(t,s)B(s) = B(t) for all t > s. We say that {B(t) : t € R}
is positive invariant if we only have the inclusion S(t,s)B(s) C B(t).

Now we can define the pullback attractor for an evolution process.

Definition 3 A family of compact sets {A(t) : t € R} is the pullback attractor
for {S(t,s) : s <t} if it is invariant, attracts all bounded subsets of X ‘in the
pullback sense’, that is,

lim dist(S(¢,s)B,A(t)) =0, Vt € R, VB C X bounded,

§——00

and is minimal in the sense that if there exists a family of closed sets {C(t) :
t € R} such that attracts bounded sets of X, then A(t) C C(t), for all t € R.

We use the Hausdorff semi-distance. Let A, B be subsets of X and d : X —
R the distance in X, then we define the Hausdorff semi-distance as

dist inf d(a,b
st o et

In the nonautonomous case we can also define forward attraction as follows:
we say that {C'(¢) : t € R} attracts the bounded set B C X if

tlim dist(S(t + s,s)B,C(t +s)) = 0.
— 00

The pullback attractor does not necessarily have forward attraction.
Consider the following simple examples of nonautonomous equations giving
different answers to the relation on pullback and forward attraction. Indeed,
consider

yi(t) = =2ty (t) + 267

and
yh(t) = 2tya(t) + 2t°.

Both can be solved explicitly with initial value yyp € R at time s € R by

t
y(t,s) = (yo — s)e*(t2752) +t— et / er2d7",
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¢
ya(t,s) = (yo + s)etzfs2 +ttel / e dr.

In the first case we can observe how the trajectory is more and more close
to Aj(t) = t — et fg e”’dr when t goes to infinity. In the same way, the
trajectories of the second eguation are attracted in a pullback sense by the family
As(t) = —t + et’ fim e~ ""dr, that is, when initial time s — —oo. However,
{A1(t) : t € R} is forward but not pullback attracting and {Ax(t) : ¢t € R} is
pullback but not forward.

2 Pullback and forward attraction in evolution processes

The uniform forward attraction gives us trivial examples of pullback attractors
that have forward attraction, because a pullback uniform attractor is also a
forward uniform attractor and vice versa. In this case we need a uniform concept
of attraction, that is, we say that B C X attracts uniformly under the process
{S(t,s):s <t} ifforany C C X

lim sup dist(S(¢t + s,)C, B) = 0. (1)

t—o00 sER

We do not distinguish between pullback and forward because if we perform a
simple change of variables we obtain

lim supdist(S(¢,¢t —s)C, B) = 0. (2)

§— 00 teR

The first definition of uniform attractor is given in [8] and is based on the
autonomous definition of global attractor, so the authors define it as a not
necessarily invariant, in autonomous sense (S (¢, s)A = T(t—s)A = A), compact
subset that is uniformly attracting. However, afterwards in the same section,
we can find the concept of kernel sections of the uniform attractor, a particular
concept of pullback attractor. In [6] we can find a definition of the uniform
attractor where the invariant property holds. In both cases, all the results
appear in the skew-product framework. Below we write a general definition and
an existence result within the framework of evolution processes.

Definition 4 Let {S(t,s) : s <t} be an evolution process. A family of bounded
closed sets {A,(t) : t € R} is called the uniform attractor if the following
properties hold:

1. There exists a compact set A C X such that User Au(t) C A.
2. It is uniformly attracting under {S(t,s) : s < t}.
3. It is minimal in the sense of Definition 3.

Theorem 1 If there exists a compact uniformly attracting set, then there
ezists the uniform attractor.
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Although we need a pullback attracting family, the forward attraction comes
from the compact set A. Actually, in this case we have a global attractor that
is attracting in the pullback sense too.

In [9], the existence of a uniform exponential attractor for the
nonautonomous equation

{ut =aAu — f(u)+ g(t) in Q

u(z,t) =0 in 0Q, )

is proved under some restrictions for functions f and g.

Other examples are nonautonomous perturbations of gradient-like
semigroups, where the forward attraction comes from the autonomous nature
of the limit problem. This kind of processes possesses a concrete structure as
the union of unstable manifolds of some specific sets. Let {S,(t,s) : t > s}

be evolution processes, with n € [0,1], such that S, e So in a certain sense,
and {So(t,s) = T(t —s) : t > s} is a gradient-like semigroup, that is, there
exists a finite number of equilibria and all the global trajectories converge
forward and backward to them. Let us suppose that there exits a pullback
attractor {A,(t) : ¢ € R} and a finite number of isolated invariant families
{E195 s Enp} with traces {I'y ,, ..., [y}, where Ty, = Jycr Zig(t). In this
general case, and doing a comparison between autonomous and nonautonomous
case, those isolated invariant families play the role of equilibrium points. We
need to introduce the concept of trace because the dynamic of each Z; , is not
constant in general (see [5] for more details and definitions). Let also suppose
that for n = 0 we have a gradient-like global attractor. Under some conditions
we can write the pullback attractor as A, (t) = Ui, W*(E;,,)(¢) for all n < no
for some 79 > 0. The following result is Theorem 1.12 of [5] and show how a
pullback attractor possesses a forward attraction too.

Theorem 2 Suppose all the stationary points of {So(t,s) =T (t—s):t > s}
are hyperbolic. If we also assume that there is v > 0 and, for each 1 < i < n,
a neighborhood V; ,, of the trace I';,, of =;,, such that for any ug € Vi,, s € R
and as long as Sy(t + s,s)ug € Vi

sup dist(S, (t + s, 8)ug, W*(Zi,)(t)) < Me ™,
seR

then for any bounded set B C X, there is a constant ¢(B) > 0 such that

sup dist(S, (t + s, s)ug, A, (t + 5)) < ¢(B)e ™, for all ug € B. (4)
seR

The following nonautonomous damped wave equation gives us an example
of pullback attractor with exponential forward attraction. In this case we have
a nonautonomous problem that does not come from an autonomous one (see [3]
for more details). Let us consider the following equation

u(z,t) =0 in 09, (5)
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where 2 C R" is a bounded smooth domain, f € C?(R) satisfies some growth
conditions, and § : R — R is bounded and globally Lipschitz. The existence of
the pullback attractor in H}(2) x L?(Q) for this problem has been recently
proved in [4], and if we assume that there only exists a finite number of
equilibrium points, and all of them are hyperbolic, then the pullback attractor
has exponential forward attraction as in (4).

3 Trajectories inside the pullback attractor

One of the most important result in the theory of pullback attractors is related
of its finite fractal dimension. As in the autonomous case (see [14]), results in
[13] prove that for each trajectory of {S(¢,s) : s < t} , another one can be found
inside the pullback attractor that tracks the original one. The following theorem
gives an analogous result based on forward attracting families for evolution
processes.

Theorem 3 Suppose that the process {S(t,s): s <t} is Lipschitz in X,

sup [|S(t+ s, 8)u — S(t + s, 8)v||x < &(t)||u—v|x, (6)
seR

with £ : RT U {0} — RT U {0} bounded in compact subsets and u,v in any
bounded subset B € X . Suppose also that there exists a family of compacts sets
{A(t) : t € R} that forward attracts bounded sets and is positive invariant under
{S(t,s) : s < t}. Then, for each trajectory u(t,s) € X of {S(t,s) : s <t} and
positive sequences {e,}°2, and {T,}52, with e, "0, T, < Thy1 and

n—oo

T, — oo, there exists a sequence t, "2 0 and v, € A(ty, + s) such that

sup ||u(t+t, +8,8) — S{E+tn+ 8, tn + S)vnllx < en- (7)
te[0,T5,]

Moreover, the Gumps’ ||vp41 — S(Th + tn + 8, tn + $)vn||x decrease to zero.

Proof. By the forward attraction and the compactness of each set of the
family {A(t) : t € R}, there exists a time to = to(co,Tp) and a vg € Aty + s)

such that
€0

S(to + s,s)u(s) —vl|lx L ——.
15 (to Juls) ol maxyefo,1,] K(t)
Hence, using (6) we have

|S(t+to+ s,s)u(s) — S(t+to+ s,to + s)vo | x
= ||S(t + to + s, to + 8)S(to + s, s)u(s) — S(t + to + s,to + $)vo|| x

< 1S (to + s. —
e w(1)[[S(to -+ 5. u(s) — w0l x

< g for all ¢t € [0, Tp).

Now, for £; and 77 we can find a ¢; and a v1 € A(t; + s) such that to < ¢4

and
€1

S(t1+s,8)u(s) —v {—
[[5(t1 Ju(s) — v1llx a7, ~(0)
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therefore,
[IS(t+t1+ s,8)u(s) — St +t1 + s,t1 + s)v1||x < &1 for all ¢ € [0,T1].

In the same manner, we can see that for any €, and 7, there exist a time
tn—1 < t, and a v, € A(t, + s) such that

1St + tn, + s, 8)u(s) = S(t+ty + s,tn + s)v1||x <&, for all t € [0,T,,].
Finally, we have

|vnt1—=S(Tn + tn + 8, tn + $)vnllx
< Nongr = S(Tn 4+ tn + 8, tn + $)u(tn + 8| x
+|S(Th + tn + 8. tn + S)u(ty +5) = S(Tn + tn + 8, tn + S)vn I x
< Eng1 +En,

which completes the proof. O

Remark 1 As t, does not depend on the initial time, we can track u(t,s) by
trajectories in {A(t) : t € R} of length T, from t, + s to ty41 + s within a
distance &,,.

Due to Theorem 3, the uniform exponential attractor in example (3) tracks
the forward trajectories of the system in H{ (2). If we have forward attraction in
the pullback attractor (as in example (5)), we can understand all the dynamics
of the system only by the study of the dynamic inside it, obtaining a complete
representation of the dynamic of the system in a finite fractal dimensional
set. This shows the importance of studying pullback attractor with forward
attraction to understand the whole dynamic of nonautonomous systems.
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Resumen:

The Cartesian Cut Cell method has been applied to different flow
configurations by researchers at the Centre of Mathematical Modelling and Flow
Analysis. This method has been implemented to define flow domains around
obstacles using a Godunov-type high order upwind scheme to solve Shallow
Water Equations and Navier-Stokes (Euler) equations in two phase flows.

A new idea to study Navier-Stokes (Euler) equations in just one phase flows
where the domain is accurately described using the Cartesian Cut Cell Method
around the moving free surface is presented. The solution technique involves
three stages for every time step: the definition of the domain, the solution
of the flow equations and the movement of the free surface. The Cartesian
Cut Cell Method only requires to recompute cells affected by the movement
of the free surface providing quickly the new domain. The flow equations are
solved using the Artificial Compressibility Method and a Godunov-type high
order upwind scheme involving the solution of Riemann problems. The Heigh
Function method is applied to study the evolution on time of the free surface.
This method involves the solution of the kinematic equations, where a fourth
order Runge-Kutta method is employed. Boundary conditions at the free surface
are discussed.

The technique proposed is very quick and allows the use of big time
steps. In comparison with the two phase version, the proposed techniques
used one thousand times bigger time steps and require around 25 times less
computational effort. On the other hand, the results show dependence on the
artificial compressibility parameter introduced as part of the solution of the flow
equations. Extensions to the presented study are proposed including the use of
different flow solvers.

An algorithm to solve free surface flows in a single phase system is presented.
The Cartesian Cut Cell Method is used to define the grid in a domain involving
free surface and/or the presence of an obstacle. The algorithm approximate the
solutions of the incompressible Navier-Stokes equations based on the Artificial
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Compressibility Method and uses the cell-centred finite volume approach. A
Godunov-type high order upwind scheme is applied to compute fluxes at cell
interfaces, involving polynomial reconstruction and the solution of a Riemann
problem. The HLL Riemann solver and Roe’s Riemann solver are implemented
as part of the Godunov-type upwind scheme. An implicit scheme is used for
the time discretization in problems without free surface while an explicit forth
order Runge-Kutta method is used in free surface problems. An introduction
to problem where the free surface and the obstacle cut each other is presented.
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Dpto. de Ecuaciones Diferenciales y An. Numérico. Fac. de Matematicas. Univ. de
Sevilla. Tarfia, s/n. 41012 Sevilla. Tel: 954 557 992.
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INFORMACION PARA LOS AUTORES

1. Los articulos publicados en este Boletin podran ser escritos en espanol o
inglés y deberan ser enviados por correo certificado a

Prof. E. FERNANDEZ CARA

Presidente del Comité Cientifico, Boletin SéMA
Dpto. E.D.A.N., Facultad de Mateméticas
Aptdo. 1160, 41080 SEVILLA

También podran ser enviados por correo electrénico a la direccion
boletin.semaluclm.es

En ambos casos, el/los autor/es deberan enviar por correo certificado
una carta a la direccion precedente mencionando explicitamente que el
articulo es sometido a publicacién e indicando el nombre y direccién del
autor corresponsal. En esta carta, podran sugerirse nombres de miembros
del Comité Cientifico que, a juicio de los autores, sean especialmente
adecuados para juzgar el trabajo.

La decision final sobre aceptacion del trabajo serd precedida de un
procedimiento de revisiéon anénima.

2. Las contribuciones seran preferiblemente de una longitud inferior a 24
péginas y se deberan ajustar al formato indicado en los ficheros a tal efecto
disponibles en la pagina web de la Sociedad (http://www.sema.org.es/).

3. El contenido de los articulos publicados corresponderé a un area de trabajo
preferiblemente conectada a los objetivos propios de la Matemaética
Aplicada. En los trabajos podra incluirse informacién sobre resultados
conocidos y/o previamente publicados. Se anima especialmente a los
autores a presentar sus propios resultados (y en su caso los de otros
investigadores) con estilo y objetivos divulgativos.
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Ficha de Inscripcién Individual‘

Sociedad Espanola de Matematica Aplicada SEMA

Remitir a: Inigo Arregui, Dpto de Matematicas, Fac. de Informatica,
Universidad de A Coruna. Campus de Elvifia, s/n. 15071 A Coruna.
CIF: G-80581911

Datos Personales
0 ApPellidoS: .o e
o Nombre: ... .
o Domicilior ...
e CP: ..., Poblacion: ..........oooiiiii
e Teléfono: ...............iiall DNI/CIF: ...,

e Fecha de inScripCion: ... ...oviir i e e e

Datos Profesionales
o Departamento: ....... ... e
e Facultad o Escuela: ........ ..
e Universidad o Institucion: ........ . .. . . i i
® Domicilior ... e
e CP: ............ Poblacion: ....... ...
e Teléfono: ......... ..., Fax: ... o
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o Pagina web: http:// oo e
e Categoria Profesional: ......... . ... i i

e Lineas de InvestigaciOn: ............o.oiiiiiiiiiinii i

Direccion para la correspondencia: [0 Profesional [0 Personal

Cuota anual para el afio 2010

O Socio ordinario: 30€ O Socio de reciprocidad con la RSME: 12€
O Socio estudiante: 15€



Datos bancarios

Muy Sres. Mios:
Ruego a Uds. que los recibos que emitan a mi cargo en concepto de cuotas
de inscripcién y posteriores cuotas anuales de SeMA (Sociedad Espa nola de
Matemaética Aplicada) sean pasados al cobro en la cuenta cuyos datos figuran
a continuacién
Entidad Oficina D.C. Niamero de cuenta

(4 digitos) | (4 digitos) | (2 digitos) (10 digitos)

e CP.: ............ Poblacion: ... ..

Con esta fecha, doy instrucciones a dicha entidad bancaria para que obren
en consecuencia.
Atentamente,

Muy Sres. Mios:

Ruego a Uds. que los recibos que emitan a mi cargo en concepto
de cuotas de inscripcion y posteriores cuotas anuales de SéMA (Sociedad
Espa nola de Matemaética Aplicada) sean cargados a mi cuenta corriente/libreta
en esa Agencia Urbana y transferidas a

SEMA: 0128 - 0380 - 03 - 0100034244
Bankinter

C/ Hernan Cortés, 63

39003 Santander

Atentamente,
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e Universidad o Institucion: ........... ... oo i i
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e Teléfono: ...............iiall DNI/CIF: ...,
o Correo electrOniCo: ... v.. it
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Forma de pago

La cuota anual para el afio 2009 como Socio Institucional es de 150€.
El pago se realiza mediante transferencia bancaria a

SEMA: 0128 - 0380 - 03 - 0100034244
Bankinter

C/ Hernan Cortés, 63

39003 Santander



